E2 excitation strength in {sup 55}Ni: Coupling of the {sup 56}Ni 2{sub 1}{sup +} collective core vibration to the f{sub 7/2} odd neutron hole
The collectivity of the odd-mass nucleus {sup 55}Ni was explored via intermediate-energy Coulomb excitation using a powerful combination of particle and {gamma}-ray spectroscopy. A {gamma}-ray at 2879(18) keV was observed and is interpreted to deexcite a member of the core-coupled quintuplet 2{sub 1...
Gespeichert in:
Veröffentlicht in: | Physical review. C, Nuclear physics Nuclear physics, 2004-12, Vol.70 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The collectivity of the odd-mass nucleus {sup 55}Ni was explored via intermediate-energy Coulomb excitation using a powerful combination of particle and {gamma}-ray spectroscopy. A {gamma}-ray at 2879(18) keV was observed and is interpreted to deexcite a member of the core-coupled quintuplet 2{sub 1}{sup +}({sup 56}Ni)x{nu}f{sub 7/2}{sup -1} at the same energy. By similarity with the mirror nucleus {sup 55}Co, transition probabilities were calculated assuming J{sup {pi}}=9/2{sup -} and J{sup {pi}}=11/2{sup -} for this state. Both assumptions lead to a transition strength higher than predicted by a large-scale shell-model calculation using the GXPF1 effective interaction and exceed the value predicted within a simple weak-coupling approach. |
---|---|
ISSN: | 0556-2813 1089-490X |
DOI: | 10.1103/PhysRevC.70.064321 |