Vibrational dynamics of liquid gallium at 320 and 970 K

The microscopic ion dynamics of liquid gallium was investigated at 320 K--that is, just above the melting point--and 970 K by inelastic neutron scattering experiments and molecular dynamics simulations. The high quality of the experimental data allowed the observation of density fluctuation modes ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2005, Vol.71 (1), p.014207.1-014207.11, Article 014207
Hauptverfasser: BOVE, L. E, FORMISANO, F, SACCHETTI, F, PETRILLO, C, IVANOV, A, DORNER, B, BAROCCHI, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microscopic ion dynamics of liquid gallium was investigated at 320 K--that is, just above the melting point--and 970 K by inelastic neutron scattering experiments and molecular dynamics simulations. The high quality of the experimental data allowed the observation of density fluctuation modes extending up to 1.0 A{sup -1} and existing at both temperatures. At melting, an acousticlike mode propagating with a velocity definitely exceeding the sound velocity was observed, in agreement with the results of a recent inelastic x-ray scattering experiment. The mode velocity and damping were found to be almost temperature independent. The experimental response function was compared with the results of a molecular dynamics simulation, based on a simple model for the effective ion-ion potential which, however, did not contain any temperature-dependent parameter. The result worth noting is that, despite the simple potential, the simulation was capable to reproduce all the observed features of the measured dynamicstructure factor quantitatively and at both the temperatures.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.71.014207