A femtosecond study of the infrared-driven cis-trans isomerization of nitrous acid (HONO)
We investigate the dynamics and mechanism of the IR-driven cis-trans isomerization of nitrous acid (HONO) in a low-temperature krypton matrix applying ultrafast time resolved IR spectroscopy. After excitation of the OH-stretching mode the trans HONO state decays biexponentially on a 8 and 260 ps tim...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2005-01, Vol.122 (4), p.44509-44509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the dynamics and mechanism of the IR-driven cis-trans isomerization of nitrous acid (HONO) in a low-temperature krypton matrix applying ultrafast time resolved IR spectroscopy. After excitation of the OH-stretching mode the trans HONO state decays biexponentially on a 8 and 260 ps time scale. The initially excited cis HONO state decays on a 20 ps time scale. Cis HONO isomerizes with 10% quantum yield on a 20 ps time scale to trans HONO. The quantum yield we observe is significantly smaller than the previously reported 100%, which could imply that additional, much slower reaction channels exist. We furthermore developed a four-dimensional model of the system, which includes the three proton intramolecular degrees of freedom of HONO fully quantum mechanically and one intermolecular translational degree of freedom of the molecule in the crystal cage. We find that cis-trans isomerization necessarily is accompanied by a translation of the molecule as a whole in the crystal cage. The translational degree of freedom tunes the intramolecular proton states of HONO with respect to each other. When resonances occur, the proton states might couple and transfer population. We suggest a possible reaction pathway, where the cis OH-stretch excited state first couples to a high cis torsional mode, which then may transfer almost instantaneously to the trans side. The model qualitatively explains all experimental observations. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1834567 |