Two-photon state selection and angular momentum polarization probed by velocity map imaging: application to H atom photofragment angular distributions from the photodissociation of two-photon state selected HCl and HBr

A formalism for calculating the angular momentum polarization of an atom or a molecule following two-photon excitation of a J-selected state is presented. This formalism is used to interpret the H atom photofragment angular distributions from single-photon dissociation of two-photon rovibronically s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2004-12, Vol.121 (23), p.11802-11809
Hauptverfasser: Manzhos, Sergei, Romanescu, Constantin, Loock, Hans-Peter, Underwood, Jonathan G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A formalism for calculating the angular momentum polarization of an atom or a molecule following two-photon excitation of a J-selected state is presented. This formalism is used to interpret the H atom photofragment angular distributions from single-photon dissociation of two-photon rovibronically state selected HCl and HBr prepared via a Q-branch transition. By comparison of the angular distributions measured using the velocity map imaging technique with the theoretical model it is shown that single-photon dissociation of two-photon prepared states can be used for pathway identification, allowing for the identification of the virtual state symmetry in the two-photon absorption and/or the symmetry of the dissociative state. It is also shown that under conditions of excitation with circularly polarized light, or for excitation via non-Q-branch transitions with linearly polarized light the angular momentum polarization is independent of the dynamics of the two-photon transition and analytically computable.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1809571