Splitting matter waves using an optimized standing-wave light-pulse sequence
In a recent experiment (Wang et al., e-print cond-mat/0407689), it was observed that a sequence of two standing-wave square pulses can split a Bose-Einstein Condensate at rest into {+-}2({Dirac_h}/2{pi})k diffraction orders with almost 100% efficiency. By truncating the Raman-Nath equations to a two...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-04, Vol.71 (4), Article 043602 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent experiment (Wang et al., e-print cond-mat/0407689), it was observed that a sequence of two standing-wave square pulses can split a Bose-Einstein Condensate at rest into {+-}2({Dirac_h}/2{pi})k diffraction orders with almost 100% efficiency. By truncating the Raman-Nath equations to a two-state model, we provide an intuitive picture that explains this double-square-pulse beam-splitter scheme. We further show it is possible to optimize a standing-wave multiple-square-pulse sequence to efficiently diffract an atom at rest to a symmetric superposition of {+-}2n({Dirac_h}/2{pi})k diffraction orders with n>1. The approach is considered to be qualitatively different from the traditional light-pulse schemes in the Bragg or the Raman-Nath region, and can be extended to more complex atomic optical elements that produce various tailored output momentum states from a cold atom source. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.71.043602 |