Optimal quantum circuits for general two-qubit gates
In order to demonstrate nontrivial quantum computations experimentally, such as the synthesis of arbitrary entangled states, it will be useful to understand how to decompose a desired quantum computation into the shortest possible sequence of one-qubit and two-qubit gates. We contribute to this effo...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2004-03, Vol.69 (3), Article 032315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to demonstrate nontrivial quantum computations experimentally, such as the synthesis of arbitrary entangled states, it will be useful to understand how to decompose a desired quantum computation into the shortest possible sequence of one-qubit and two-qubit gates. We contribute to this effort by providing a method to construct an optimal quantum circuit for a general two-qubit gate that requires at most 3 controlled-NOT (CNOT) gates and 15 elementary one-qubit gates. Moreover, if the desired two-qubit gate corresponds to a purely real unitary transformation, we provide a construction that requries at most 2 CNOT and 12 one-qubit gates. We then prove that these constructions are optimal with respect to the family of CNOT, y-rotation, z-rotation, and phase gates. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.69.032315 |