Conal representation of quantum states and non-trace-preserving quantum operations

We represent generalized density matrices of a $d$-complex dimensional quantum system as a subcone of a real pointed cone of revolution in $\mathbb{R}^{d^2}$, or indeed a Minkowskian cone in $\mathbb{E}^{1,d^2-1}$. Generalized pure states correspond to certain future-directed light-like vectors of $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2003-10, Vol.68 (4), Article 042310
Hauptverfasser: Arrighi, Pablo, Patricot, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We represent generalized density matrices of a $d$-complex dimensional quantum system as a subcone of a real pointed cone of revolution in $\mathbb{R}^{d^2}$, or indeed a Minkowskian cone in $\mathbb{E}^{1,d^2-1}$. Generalized pure states correspond to certain future-directed light-like vectors of $\mathbb{E}^{1,d^2-1}$. This extension of the Generalized Bloch Sphere enables us to cater for non-trace-preserving quantum operations, and in particluar to view the per-outcome effects of generalized measurements. We show that these consist of the product of an orthogonal transform about the axis of the cone of revolution and a positive real linear transform. We give detailed formulae for the one qubit case and express the post-measurement states in terms of the initial state vectors and measurement vectors. We apply these results in order to find the information gain versus disturbance tradeoff in the case of two equiprobable pure states. Thus we recover Fuchs and Peres' formula in an elegant manner.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.68.042310