Self-adjoint extensions of the Dirac Hamiltonian in the magnetic-solenoid field and related exact solutions
We study solutions of Dirac equation in the field of Aharonov-Bohm solenoid and a collinear uniform magnetic field. On this base we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We reduce (3+1)-dimensional problem to (2+1)-dimension...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2003-02, Vol.67 (2), Article 024103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study solutions of Dirac equation in the field of Aharonov-Bohm solenoid and a collinear uniform magnetic field. On this base we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We reduce (3+1)-dimensional problem to (2+1)-dimensional one by a proper choice of spin operator. Then we study the problem doing a finite radius regularization of the solenoid field. We exploit solutions of the latter problem to specify boundary conditions in the singular case. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.67.024103 |