Introduction to Nonequilibrium Quantum Field Theory

There has been substantial progress in recent years in the quantitative understanding of the nonequilibrium time evolution of quantum fields. Important topical applications, in particular in high energy particle physics and cosmology, involve dynamics of quantum fields far away from the ground state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2004-01, Vol.739 (1), p.3-62
1. Verfasser: Berges, Jurgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been substantial progress in recent years in the quantitative understanding of the nonequilibrium time evolution of quantum fields. Important topical applications, in particular in high energy particle physics and cosmology, involve dynamics of quantum fields far away from the ground state or thermal equilibrium. In these cases, standard approaches based on small deviations from equilibrium, or on a sufficient homogeneity in time underlying kinetic descriptions, are not applicable. A particular challenge is to connect the far-from-equilibrium dynamics at early times with the approach to thermal equilibrium at late times. Understanding the 'link' between the early- and the late-time behavior of quantum fields is crucial for a wide range of phenomena. For the first time questions such as the explosive particle production at the end of the inflationary universe, including the subsequent process of thermalization, can be addressed in quantum field theory from first principles. The progress in this field is based on efficient functional integral techniques, so-called n-particle irreducible effective actions, for which powerful nonperturbative approximation schemes are available. Here we give an introduction to these techniques and show how they can be applied in practice. Though we focus on particle physics and cosmology applications, we emphasize that these techniques can be equally applied to other nonequilibrium phenomena in complex many body systems.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.1843591