Modeling Cesium Ion Exchange on Fixed-Bed Columns of Crystalline Silicotitanate Granules
A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-t...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2000-05, Vol.39 (5), p.1356-1363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5−5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batch values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 × 10-11 m2/s for 5−5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie990748u |