Progenitors and explosion properties of supernova remnants hosting central compact objects: II. A global systematic study with a comparison to nucleosynthesis models

ABSTRACT Core-collapse explosions of massive stars leave behind neutron stars, with a known diversity that includes the ‘Central Compact Objects’ (CCOs). Typified by the neutron star discovered near the centre of the Cas A supernova remnant (SNR), CCOs have been observed to shine only in X-rays. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-11, Vol.525 (4), p.6257-6284
Hauptverfasser: Braun, C, Safi-Harb, S, Fryer, C L, Zhou, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Core-collapse explosions of massive stars leave behind neutron stars, with a known diversity that includes the ‘Central Compact Objects’ (CCOs). Typified by the neutron star discovered near the centre of the Cas A supernova remnant (SNR), CCOs have been observed to shine only in X-rays. To address their supernova progenitors, we perform a systematic study of SNRs that contain a CCO and display X-ray emission from their shock-heated ejecta. We make use of X-ray data primarily using the Chandra X-ray observatory, complemented with XMM–Newton. This study uses a systematic approach to the analysis of each SNR aimed at addressing the supernova progenitor as well as the explosion properties (energy and ambient density). After fitting for the ejecta abundances estimated from a spatially resolved spectroscopic study, we compare the data to six nucleosynthesis models making predictions on supernova ejecta yields in core-collapse explosions. We find that the explosion models commonly used by the astrophysics community do not match the ejecta yields for any of the SNRs, suggesting additional physics, for example multidimensional explosion models or updated progenitor structures, are required. Overall we find low-mass (≤25 solar masses) progenitors among the massive stars population and low-energy explosions (
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stad2592