Sorption of Nonionic Surfactant Oligomers to Sediment and PCE DNAPL:  Effects on PCE Distribution between Water and Sediment

Introduction of surfactant mixtures to the subsurface for the purpose of surfactant-enhanced aquifer remediation requires consideration of the effects of surfactant sorption to sediment and nonaqueous phase liquids. These effects include alteration of the solubilizing properties of the surfactant mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2000-02, Vol.34 (4), p.672-679
Hauptverfasser: John, W. Wynn, Bao, Gaobin, Johnson, William P, Stauffer, Thomas B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction of surfactant mixtures to the subsurface for the purpose of surfactant-enhanced aquifer remediation requires consideration of the effects of surfactant sorption to sediment and nonaqueous phase liquids. These effects include alteration of the solubilizing properties of the surfactant mixture and alteration of the sorption properties of the stationary phase. Sorption of octylphenol ethoxylate (EO) surfactant oligomers to a low organic carbon content (f oc) aquifer sediment and to dense nonaqueous phase liquid (DNAPL) consisting of tetrachloroethene (PCE) was examined in batch experiments. At aqueous surfactant concentrations far below the critical micelle concentration (CMC) of the mixture, sorption to sediment was characterized by an initial steep isotherm for both high and low EO content oligomers, with somewhat greater uptake of high EO content oligomers. This stage of sorption resulted in mild increases in the equilibrium constant, K d,PCE, for distribution of PCE between solution (including surfactant) and sediment (including sorbed surfactant). As the aqueous surfactant concentration increased, surface aggregation of low EO content oligomers on the sediment commenced, and a dramatic increase in K d,PCE was observed. At aqueous surfactant concentrations increasing above the CMC, the formation of solution micelles caused the sorbed surfactant concentrations to plateau and then decrease. This decrease in sorbed surfactant, along with competition by micelles for contaminant, likely contributed to the observed rapid decrease in K d,PCE toward zero. Surfactant sorption to PCE DNAPL was greater relative to sediment by 1−2 orders of magnitude, with much greater uptake of the low EO content oligomers. Sorption of all but the lowest EO content oligomers to the PCE DNAPL was terminated by micellization.
ISSN:0013-936X
1520-5851
DOI:10.1021/es990886a