Oxidation of Activated Carbon Fibers: Effect on Pore Size, Surface Chemistry, and Adsorption Properties
Activated carbon fibers (ACFs) were oxidized using both aqueous and nonaqueous treatments. As much as 29 wt % oxygen can be incorporated onto the pore surface in the form of phenolic hydroxyl, quinone, and carboxylic acid groups. The effect of oxidation on the pore size, pore volume, and the pore su...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 1999-12, Vol.11 (12), p.3476-3483 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activated carbon fibers (ACFs) were oxidized using both aqueous and nonaqueous treatments. As much as 29 wt % oxygen can be incorporated onto the pore surface in the form of phenolic hydroxyl, quinone, and carboxylic acid groups. The effect of oxidation on the pore size, pore volume, and the pore surface chemistry was thoroughly examined. The average micropore size is typically affected very little by aqueous oxidation while the micropore volume and surface area decreases with such a treatment. In contrast, the micropore size and micropore volume both increase with oxidation in air. Oxidation of the fibers produces surface chemistries in the pore that provide for enhanced adsorption of basic (ammonia) and polar (acetone) molecules at ambient and nonambient temperatures. The adsorption capacity of the oxidized fibers for acetone is modestly better than the untreated ACFs while the adsorption capacity for ammonia can increase up to 30 times compared to untreated ACFs. The pore surface chemical makeup was analyzed using elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray photoelectron spectroscopy (XPS). |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm990123m |