Kinetic Study of Hydrolysis of Methylene Chloride from 100 to 500 °C

Methylene chloride (CH2Cl2) is a representative model compound commonly found in aqueous wastes, process effluents, and contaminated soils and sediments. Oxidation in supercritical water provides a viable treatment and remediation pathway to convert CH2Cl2 to CO2, H2O, and HCl. However, in earlier w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1999-11, Vol.38 (11), p.4169-4174
Hauptverfasser: Salvatierra, Dolors, Taylor, Joshua D, Marrone, Philip A, Tester, Jefferson W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4174
container_issue 11
container_start_page 4169
container_title Industrial & engineering chemistry research
container_volume 38
creator Salvatierra, Dolors
Taylor, Joshua D
Marrone, Philip A
Tester, Jefferson W
description Methylene chloride (CH2Cl2) is a representative model compound commonly found in aqueous wastes, process effluents, and contaminated soils and sediments. Oxidation in supercritical water provides a viable treatment and remediation pathway to convert CH2Cl2 to CO2, H2O, and HCl. However, in earlier work, partial hydrolysis was observed at subcritical temperatures (
doi_str_mv 10.1021/ie9903700
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20003873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b574300305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-e726755dd0144da747e8466642522397aa61c1b675dc178d7c8271a4c1d1dc963</originalsourceid><addsrcrecordid>eNpt0MFKAzEQBuAgCtbqwTdYUA8eVpNNsskepdRWrFjbCuIlxCRLU7ebkqTgvpXP4JO5ZUUvnoYwX2aYH4BTBK8QzNC1NUUBMYNwD_QQzWBKIaH7oAc55ynlnB6CoxBWEEJKCemB4b2tTbQqmcetbhJXJuNGe1c1wYbd68HEZVOZ2iSDZeW81SYpvVsnCMIkuoS25etzcAwOSlkFc_JT--D5drgYjNPJ4-hucDNJJcY4poZlOaNUa4gI0ZIRZjjJ85xkNMtwwaTMkUJvrdEKMa6Z4hlDkiikkVZFjvvgrJvrQrQiKBuNWipX10ZFkbVHYc5wqy47pbwLwZtSbLxdS98IBMUuJfGbUmvPO7uRQcmq9LJWNvx9KArE25l9kHbMhmg-ftvSv4ucYUbFYjoXTy9TNnsdzcTOX3ReqiBWbuvrNpZ_1n8DRrh-Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Study of Hydrolysis of Methylene Chloride from 100 to 500 °C</title><source>American Chemical Society</source><creator>Salvatierra, Dolors ; Taylor, Joshua D ; Marrone, Philip A ; Tester, Jefferson W</creator><creatorcontrib>Salvatierra, Dolors ; Taylor, Joshua D ; Marrone, Philip A ; Tester, Jefferson W ; Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><description>Methylene chloride (CH2Cl2) is a representative model compound commonly found in aqueous wastes, process effluents, and contaminated soils and sediments. Oxidation in supercritical water provides a viable treatment and remediation pathway to convert CH2Cl2 to CO2, H2O, and HCl. However, in earlier work, partial hydrolysis was observed at subcritical temperatures (&lt;374 °C). This low-temperature reactivity complicates the measurement of kinetic data. In this study, the kinetics of CH2Cl2 hydrolysis in sub- and supercritical water were experimentally measured and modeled. Catalytic effects from a high nickel content alloy used for the reactor were studied by comparing kinetic data obtained in quartz ampules with and without metal present. No heterogeneous catalysis effects were observed. Reaction rates from 100 to 500 °C were measured to check the reproducibility of existing published data (up to 150 °C) and to extend the database for hydrolysis to the supercritical region in order to develop a robust empirical global rate expression. The data show a local maximum in the rate constant below the critical point of water, consistent with a possible change in the reaction mechanism induced by changes in the solvent's physical properties (dielectric constant, density, etc.). Variations in the global rate constant agree quantitatively with predictions obtained by applying the Kirkwood model, which accounts for changes in the dielectric constant and density of the solvent.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie9903700</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; CATALYTIC EFFECTS ; CHEMICAL REACTION KINETICS ; Chemistry ; ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; HYDROLYSIS ; Industrial wastewaters ; Kinetics and mechanisms ; LIQUID WASTES ; MATHEMATICAL MODELS ; METHYLENE CHLORIDE ; NICKEL ; Organic chemistry ; Pollution ; Reactivity and mechanisms ; REMEDIAL ACTION ; SUPERCRITICAL STATE ; WASTE PROCESSING ; Wastewaters ; Water treatment and pollution</subject><ispartof>Industrial &amp; engineering chemistry research, 1999-11, Vol.38 (11), p.4169-4174</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-e726755dd0144da747e8466642522397aa61c1b675dc178d7c8271a4c1d1dc963</citedby><cites>FETCH-LOGICAL-a333t-e726755dd0144da747e8466642522397aa61c1b675dc178d7c8271a4c1d1dc963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie9903700$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie9903700$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1991887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20003873$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Salvatierra, Dolors</creatorcontrib><creatorcontrib>Taylor, Joshua D</creatorcontrib><creatorcontrib>Marrone, Philip A</creatorcontrib><creatorcontrib>Tester, Jefferson W</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><title>Kinetic Study of Hydrolysis of Methylene Chloride from 100 to 500 °C</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Methylene chloride (CH2Cl2) is a representative model compound commonly found in aqueous wastes, process effluents, and contaminated soils and sediments. Oxidation in supercritical water provides a viable treatment and remediation pathway to convert CH2Cl2 to CO2, H2O, and HCl. However, in earlier work, partial hydrolysis was observed at subcritical temperatures (&lt;374 °C). This low-temperature reactivity complicates the measurement of kinetic data. In this study, the kinetics of CH2Cl2 hydrolysis in sub- and supercritical water were experimentally measured and modeled. Catalytic effects from a high nickel content alloy used for the reactor were studied by comparing kinetic data obtained in quartz ampules with and without metal present. No heterogeneous catalysis effects were observed. Reaction rates from 100 to 500 °C were measured to check the reproducibility of existing published data (up to 150 °C) and to extend the database for hydrolysis to the supercritical region in order to develop a robust empirical global rate expression. The data show a local maximum in the rate constant below the critical point of water, consistent with a possible change in the reaction mechanism induced by changes in the solvent's physical properties (dielectric constant, density, etc.). Variations in the global rate constant agree quantitatively with predictions obtained by applying the Kirkwood model, which accounts for changes in the dielectric constant and density of the solvent.</description><subject>Applied sciences</subject><subject>CATALYTIC EFFECTS</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>Chemistry</subject><subject>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>HYDROLYSIS</subject><subject>Industrial wastewaters</subject><subject>Kinetics and mechanisms</subject><subject>LIQUID WASTES</subject><subject>MATHEMATICAL MODELS</subject><subject>METHYLENE CHLORIDE</subject><subject>NICKEL</subject><subject>Organic chemistry</subject><subject>Pollution</subject><subject>Reactivity and mechanisms</subject><subject>REMEDIAL ACTION</subject><subject>SUPERCRITICAL STATE</subject><subject>WASTE PROCESSING</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpt0MFKAzEQBuAgCtbqwTdYUA8eVpNNsskepdRWrFjbCuIlxCRLU7ebkqTgvpXP4JO5ZUUvnoYwX2aYH4BTBK8QzNC1NUUBMYNwD_QQzWBKIaH7oAc55ynlnB6CoxBWEEJKCemB4b2tTbQqmcetbhJXJuNGe1c1wYbd68HEZVOZ2iSDZeW81SYpvVsnCMIkuoS25etzcAwOSlkFc_JT--D5drgYjNPJ4-hucDNJJcY4poZlOaNUa4gI0ZIRZjjJ85xkNMtwwaTMkUJvrdEKMa6Z4hlDkiikkVZFjvvgrJvrQrQiKBuNWipX10ZFkbVHYc5wqy47pbwLwZtSbLxdS98IBMUuJfGbUmvPO7uRQcmq9LJWNvx9KArE25l9kHbMhmg-ftvSv4ucYUbFYjoXTy9TNnsdzcTOX3ReqiBWbuvrNpZ_1n8DRrh-Sg</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Salvatierra, Dolors</creator><creator>Taylor, Joshua D</creator><creator>Marrone, Philip A</creator><creator>Tester, Jefferson W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19991101</creationdate><title>Kinetic Study of Hydrolysis of Methylene Chloride from 100 to 500 °C</title><author>Salvatierra, Dolors ; Taylor, Joshua D ; Marrone, Philip A ; Tester, Jefferson W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-e726755dd0144da747e8466642522397aa61c1b675dc178d7c8271a4c1d1dc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>CATALYTIC EFFECTS</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>Chemistry</topic><topic>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>HYDROLYSIS</topic><topic>Industrial wastewaters</topic><topic>Kinetics and mechanisms</topic><topic>LIQUID WASTES</topic><topic>MATHEMATICAL MODELS</topic><topic>METHYLENE CHLORIDE</topic><topic>NICKEL</topic><topic>Organic chemistry</topic><topic>Pollution</topic><topic>Reactivity and mechanisms</topic><topic>REMEDIAL ACTION</topic><topic>SUPERCRITICAL STATE</topic><topic>WASTE PROCESSING</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvatierra, Dolors</creatorcontrib><creatorcontrib>Taylor, Joshua D</creatorcontrib><creatorcontrib>Marrone, Philip A</creatorcontrib><creatorcontrib>Tester, Jefferson W</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvatierra, Dolors</au><au>Taylor, Joshua D</au><au>Marrone, Philip A</au><au>Tester, Jefferson W</au><aucorp>Massachusetts Inst. of Tech., Cambridge, MA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Study of Hydrolysis of Methylene Chloride from 100 to 500 °C</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>38</volume><issue>11</issue><spage>4169</spage><epage>4174</epage><pages>4169-4174</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Methylene chloride (CH2Cl2) is a representative model compound commonly found in aqueous wastes, process effluents, and contaminated soils and sediments. Oxidation in supercritical water provides a viable treatment and remediation pathway to convert CH2Cl2 to CO2, H2O, and HCl. However, in earlier work, partial hydrolysis was observed at subcritical temperatures (&lt;374 °C). This low-temperature reactivity complicates the measurement of kinetic data. In this study, the kinetics of CH2Cl2 hydrolysis in sub- and supercritical water were experimentally measured and modeled. Catalytic effects from a high nickel content alloy used for the reactor were studied by comparing kinetic data obtained in quartz ampules with and without metal present. No heterogeneous catalysis effects were observed. Reaction rates from 100 to 500 °C were measured to check the reproducibility of existing published data (up to 150 °C) and to extend the database for hydrolysis to the supercritical region in order to develop a robust empirical global rate expression. The data show a local maximum in the rate constant below the critical point of water, consistent with a possible change in the reaction mechanism induced by changes in the solvent's physical properties (dielectric constant, density, etc.). Variations in the global rate constant agree quantitatively with predictions obtained by applying the Kirkwood model, which accounts for changes in the dielectric constant and density of the solvent.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie9903700</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1999-11, Vol.38 (11), p.4169-4174
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_20003873
source American Chemical Society
subjects Applied sciences
CATALYTIC EFFECTS
CHEMICAL REACTION KINETICS
Chemistry
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
ENVIRONMENTAL SCIENCES
Exact sciences and technology
HYDROLYSIS
Industrial wastewaters
Kinetics and mechanisms
LIQUID WASTES
MATHEMATICAL MODELS
METHYLENE CHLORIDE
NICKEL
Organic chemistry
Pollution
Reactivity and mechanisms
REMEDIAL ACTION
SUPERCRITICAL STATE
WASTE PROCESSING
Wastewaters
Water treatment and pollution
title Kinetic Study of Hydrolysis of Methylene Chloride from 100 to 500 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Study%20of%20Hydrolysis%20of%20Methylene%20Chloride%20from%20100%20to%20500%20%C2%B0C&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Salvatierra,%20Dolors&rft.aucorp=Massachusetts%20Inst.%20of%20Tech.,%20Cambridge,%20MA%20(US)&rft.date=1999-11-01&rft.volume=38&rft.issue=11&rft.spage=4169&rft.epage=4174&rft.pages=4169-4174&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie9903700&rft_dat=%3Cacs_osti_%3Eb574300305%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true