Modeling the electrical double layer at solid-state electrochemical interfaces
Models of the electrical double layer (EDL) at electrode/liquid-electrolyte interfaces no longer hold for all-solid-state electrochemistry. Here we show a more general model for the EDL at a solid-state electrochemical interface based on the Poisson-Fermi-Dirac equation. By combining this model with...
Gespeichert in:
Veröffentlicht in: | Nature Computational Science 2021-03, Vol.1 (3), p.212-220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Models of the electrical double layer (EDL) at electrode/liquid-electrolyte interfaces no longer hold for all-solid-state electrochemistry. Here we show a more general model for the EDL at a solid-state electrochemical interface based on the Poisson-Fermi-Dirac equation. By combining this model with density functional theory predictions, the interconnected electronic and ionic degrees of freedom in all-solid-state batteries, including the electronic band bending and defect concentration variation in the space-charge layer, are captured self-consistently. Along with a general mathematical solution, the EDL structure is presented in various materials that are thermodynamically stable in contact with a lithium metal anode: the solid electrolyte Li
La
Zr
O
(LLZO) and the solid interlayer materials LiF, Li
O and Li
CO
. The model further allows design of the optimum interlayer thicknesses to minimize the electrostatic barrier for lithium ion transport at relevant solid-state battery interfaces. |
---|---|
ISSN: | 2662-8457 2662-8457 |
DOI: | 10.1038/s43588-021-00041-y |