Online Learning and Pricing for Service Systems with Reusable Resources
We consider a price-based revenue management problem with finite reusable resources over a finite time horizon T. Customers arrive following a price-dependent Poisson process, and each customer requests one unit of c homogeneous reusable resources. If there is an available unit, the customer gets se...
Gespeichert in:
Veröffentlicht in: | Operations research 2022-11, Vol.72 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a price-based revenue management problem with finite reusable resources over a finite time horizon T. Customers arrive following a price-dependent Poisson process, and each customer requests one unit of c homogeneous reusable resources. If there is an available unit, the customer gets served within a price-dependent exponentially distributed service time; otherwise, the customer waits in a queue until the next available unit. In this paper, we assume that the firm does not know how the arrival and service rates depend on posted prices, and thus it makes adaptive pricing decisions in each period based only on past observations to maximize the cumulative revenue. Given a discrete price set with cardinality P, we propose two online learning algorithms, termed batch upper confidence bound (BUCB) and batch Thompson sampling (BTS), and prove that the cumulative regret upper bound is O˜(√PT) , which matches the regret lower bound. In establishing the regret, we bound the transient system performance upon price changes via a novel coupling argument, and also generalize bandits to accommodate subexponential rewards. Here, we also extend our approach to models with balking and reneging customers and discuss a continuous price setting. Our numerical experiments demonstrate the efficacy of the proposed BUCB and BTS algorithms. |
---|---|
ISSN: | 0030-364X 1526-5463 |