Entanglement entropy of the proton in coordinate space
We calculate the entanglement entropy of a model proton wave function in coordinate space by integrating out degrees of freedom outside a small circular region $\overline{A}$ of radius L, where L is much smaller than the size of the proton. Here, the wave function provides a nonperturbative distribu...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2023-07, Vol.108 (1), Article 014014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We calculate the entanglement entropy of a model proton wave function in coordinate space by integrating out degrees of freedom outside a small circular region $\overline{A}$ of radius L, where L is much smaller than the size of the proton. Here, the wave function provides a nonperturbative distribution of three valence quarks. In addition, we include the perturbative emission of a single gluon and calculate the entanglement entropy of gluons in $\overline{A}$. For both quarks and gluons, we obtain the same simple result: SE = –∫ $\frac{dx}{Δx}$ NL2(x) log [Na2(x)], where a is the UV cutoff in coordinate space and Δx is the longitudinal resolution scale. Here NS(x) is the number of partons (of the appropriate species) with longitudinal momentum fraction x inside an area S. It is related to the standard parton distribution function by NS(x) = $\frac{S}{Ap}$ ΔxF(x), where Ap denotes the transverse area of the proton. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.108.014014 |