Entanglement entropy of the proton in coordinate space

We calculate the entanglement entropy of a model proton wave function in coordinate space by integrating out degrees of freedom outside a small circular region $\overline{A}$ of radius L, where L is much smaller than the size of the proton. Here, the wave function provides a nonperturbative distribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2023-07, Vol.108 (1), Article 014014
Hauptverfasser: Dumitru, Adrian, Kovner, Alex, Skokov, Vladimir V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the entanglement entropy of a model proton wave function in coordinate space by integrating out degrees of freedom outside a small circular region $\overline{A}$ of radius L, where L is much smaller than the size of the proton. Here, the wave function provides a nonperturbative distribution of three valence quarks. In addition, we include the perturbative emission of a single gluon and calculate the entanglement entropy of gluons in $\overline{A}$. For both quarks and gluons, we obtain the same simple result: SE = –∫ $\frac{dx}{Δx}$ NL2(x) log [Na2(x)], where a is the UV cutoff in coordinate space and Δx is the longitudinal resolution scale. Here NS(x) is the number of partons (of the appropriate species) with longitudinal momentum fraction x inside an area S. It is related to the standard parton distribution function by NS(x) = $\frac{S}{Ap}$ ΔxF(x), where Ap denotes the transverse area of the proton.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.108.014014