Efficient n-Doping of Polymeric Semiconductors through Controlling the Dynamics of Solution-State Polymer Aggregates
Doping of polymeric semiconductors limits the miscibility between polymers and dopants. Although significant efforts have been devoted to enhancing miscibility through chemical modification, the electrical conductivities of n-doped polymeric semiconductors are usually below 10 S cm-1. We report a di...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2021-03, Vol.60 (15) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doping of polymeric semiconductors limits the miscibility between polymers and dopants. Although significant efforts have been devoted to enhancing miscibility through chemical modification, the electrical conductivities of n-doped polymeric semiconductors are usually below 10 S cm-1. We report a different approach to overcome the miscibility issue by modulating the solution-state aggregates of conjugated polymers. We found that the solution-state aggregates of conjugated polymers not only changed with solvent and temperature but also changed with solution aging time. Modulating the solution-state polymer aggregates can directly influence their solid-state microstructures and miscibility with dopants. As a result, both high doping efficiency and high charge-carrier mobility were simultaneously obtained. The n-doped electrical conductivity of P(PzDPP-CT2) can be tuned up to 32.1 S cm-1. This method can also be used to improve the doping efficiency of other polymer systems (e.g. N2200) with different aggregation tendencies and behaviors. |
---|---|
ISSN: | 1433-7851 1521-3773 |