The impact of void environment on AGN

We study the population of active galaxies in void environment in the Sloan Digital Sky Survey. We use optical spectroscopic information to analyse characteristics of the emission lines of galaxies, accomplished by WHAN and BPT diagrams. Also, we study Wide-field Infrared Survey Explorer(WISE) mid-I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-10, Vol.509 (2)
Hauptverfasser: Ceccarelli, Laura, Duplancic, Fernanda, Garcia Lambas, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the population of active galaxies in void environment in the Sloan Digital Sky Survey. We use optical spectroscopic information to analyse characteristics of the emission lines of galaxies, accomplished by WHAN and BPT diagrams. Also, we study Wide-field Infrared Survey Explorer(WISE) mid-IR colours to assess active galactic nucleus (AGN) activity. We investigate these different AGN classification schemes, both optical and mid-IR, and their dependence on the spatial location with respect to the void centres. To this end, we define three regions: void, the spherical region defined by voidcentric distance relative to void radius (distance/rvoid) smaller than 0.8, comprising overdensities lesser than -0.9, an intermediate/transition shell region (namely, void-wall) 0.8 < distance/rvoid < 1.2, and a region sufficiently distant from voids, the field: distance/rvoid > 2. We find statistical evidence for a larger fraction of AGN and star-forming galaxies in the void region, regardless of the classification scheme addressed (either BPT, WHAN, or WISE). Moreover, we obtain a significantly stronger nuclear activity in voids compared to the field. We find an unusually large fraction of the most massive black holes undergoing strong accretion when their host galaxies reside in voids. Our results suggest a strong influence of the void environment on AGN mechanisms associated with galaxy evolution.
ISSN:0035-8711
1365-2966