SDSS-IV MaNGA: drivers of stellar metallicity in nearby galaxies
ABSTRACT The distribution of stellar metallicities within and across galaxies is an excellent relic of the chemical evolution across cosmic time. We present a detailed analysis of spatially resolved stellar populations based on >2.6 million spatial bins from 7439 nearby galaxies in the Sloan Digi...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2021-12, Vol.508 (4), p.4844-4857 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
The distribution of stellar metallicities within and across galaxies is an excellent relic of the chemical evolution across cosmic time. We present a detailed analysis of spatially resolved stellar populations based on >2.6 million spatial bins from 7439 nearby galaxies in the Sloan Digital Sky Survey-IV (SDSS-IV) Mapping Nearby Galaxies at APO (MaNGA) survey. To account for accurate inclination corrections, we derive an equation for morphology-dependent determination of galaxy inclinations. Our study goes beyond the well-known global mass–metallicity relation and radial metallicity gradients by providing a statistically sound exploration of local relations between stellar metallicity [Z/H], stellar surface mass density Σ⋆, and galactocentric distance in the global mass–morphology plane. We find a significant resolved mass density–metallicity relation $r\Sigma _\star ZR$ for galaxies of all types and masses above $10^{9.8}\, \mathrm{M_\odot }$. Different radial distances make an important contribution to the spread of the relation. Particularly, in low- and intermediate-mass galaxies, we find that at fixed Σ⋆ metallicity increases with radius independently of morphology. For high masses, this radial dependence is only observed in high Σ⋆ regions of spiral galaxies. This result calls for a driver of metallicity, in addition to Σ⋆ that promotes chemical enrichment in the outer parts of galaxies more strongly than in the inner parts. We discuss gas accretion, outflows, recycling, and radial migration as possible scenarios. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab2868 |