Spatially enhanced electric field induced second harmonic (SEEFISH) generation for measurements of electric field distributions in high-pressure plasmas

The spatial resolution of the ps electric field induced second harmonic (EFISH) generation has been enhanced by using non-collinear pump laser beam arrangements. The pump laser beam (1064 nm, nominal pulse duration 150 ps, pulse energy 20–40 mJ) is separated into two coaxial or crossing beams, overl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma sources science & technology 2022-08, Vol.31 (8), p.85002
Hauptverfasser: Raskar, S, Orr, K, Adamovich, I V, Chng, T L, Starikovskaia, S M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spatial resolution of the ps electric field induced second harmonic (EFISH) generation has been enhanced by using non-collinear pump laser beam arrangements. The pump laser beam (1064 nm, nominal pulse duration 150 ps, pulse energy 20–40 mJ) is separated into two coaxial or crossing beams, overlapping only near the focal point. The spatially enhanced EFISH (SEEFISH) signal is generated over a shorter beam overlap region compared to the collinear beam arrangement. Blocking of either of the two beams results in a complete suppression of the signal. The signal is spatially isolated from the ‘conventional’ EFISH signal and measured by a photomultiplier detector. Measurements of a known Laplacian field generated between two parallel cylinder electrodes in ambient air shows that SEEFISH improves the spatial resolution of the measurements by up to a factor of 2, such that the measurement results agree with the Laplacian field distribution. The spatial resolution is improved further by reducing the focal distance of the lens. The magnitude of the SEEFISH signal is significantly lower compared to that of the single-beam EFISH and decreases rapidly as the beam crossing angle is increased, due to the phase mismatch. This approach has a significant potential for measurements of electric field distributions in high-pressure plasmas, with an additional benefit of removing the stray second harmonic signal from the optical access windows.
ISSN:0963-0252
1361-6595
DOI:10.1088/1361-6595/ac8072