Quantum optimization of maximum independent set using Rydberg atom arrays
Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-06, Vol.376 (6598), p.1209-1215 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1215 |
---|---|
container_issue | 6598 |
container_start_page | 1209 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 376 |
creator | Ebadi, S Keesling, A Cain, M Wang, T T Levine, H Bluvstein, D Semeghini, G Omran, A Liu, J-G Samajdar, R Luo, X-Z Nash, B Gao, X Barak, B Farhi, E Sachdev, S Gemelke, N Zhou, L Choi, S Pichler, H Wang, S-T Greiner, M Vuletić, V Lukin, M D |
description | Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins. |
doi_str_mv | 10.1126/science.abo6587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1980748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661090684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-11e30f4b27bbf307bc9e7b28f6c709dcd32a7613dd0cadaea25627437dca98283</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlbP3iR48rJtPnaT3aOIH4WCKHoO2WS2RrpJ3WTB-uvd0tXLDMw888I8CF1SMqeUiUU0DryBua6DKEp5hKaUVEVWMcKP0ZQQLrKSyGKCzmL8JGTYVfwUTXhRUFrlfIqWL732qW9x2CbXuh-dXPA4NLjV364d5s5b2MJQfMIREu6j82v8urM1dGusU2ix7jq9i-fopNGbCBdjn6H3h_u3u6ds9fy4vLtdZSbnNGWUAidNXjNZ1w0nsjYVyJqVjTCSVNZYzrQUlFtLjLYaNCsEkzmX1uiqZCWfoetDbojJqUFAAvNhgvdgkqLV8G6-h24O0LYLXz3EpFoXDWw22kPoo2JCDKKIKPMBXRxQ04UYO2jUtnOt7naKErWXrEbJapQ8XFyN4X3dgv3n_6zyXzteexA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661090684</pqid></control><display><type>article</type><title>Quantum optimization of maximum independent set using Rydberg atom arrays</title><source>American Association for the Advancement of Science</source><creator>Ebadi, S ; Keesling, A ; Cain, M ; Wang, T T ; Levine, H ; Bluvstein, D ; Semeghini, G ; Omran, A ; Liu, J-G ; Samajdar, R ; Luo, X-Z ; Nash, B ; Gao, X ; Barak, B ; Farhi, E ; Sachdev, S ; Gemelke, N ; Zhou, L ; Choi, S ; Pichler, H ; Wang, S-T ; Greiner, M ; Vuletić, V ; Lukin, M D</creator><creatorcontrib>Ebadi, S ; Keesling, A ; Cain, M ; Wang, T T ; Levine, H ; Bluvstein, D ; Semeghini, G ; Omran, A ; Liu, J-G ; Samajdar, R ; Luo, X-Z ; Nash, B ; Gao, X ; Barak, B ; Farhi, E ; Sachdev, S ; Gemelke, N ; Zhou, L ; Choi, S ; Pichler, H ; Wang, S-T ; Greiner, M ; Vuletić, V ; Lukin, M D ; Krell Institute, Ames, IA (United States) ; Harvard Univ., Cambridge, MA (United States)</creatorcontrib><description>Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abo6587</identifier><identifier>PMID: 35511943</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Science & Technology - Other Topics</subject><ispartof>Science (American Association for the Advancement of Science), 2022-06, Vol.376 (6598), p.1209-1215</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-11e30f4b27bbf307bc9e7b28f6c709dcd32a7613dd0cadaea25627437dca98283</citedby><cites>FETCH-LOGICAL-c431t-11e30f4b27bbf307bc9e7b28f6c709dcd32a7613dd0cadaea25627437dca98283</cites><orcidid>0000-0001-9071-2279 ; 0000-0002-9786-0538 ; 0000-0003-4146-3637 ; 0000-0003-2144-536X ; 0000-0002-2935-2363 ; 0000-0002-8658-1007 ; 0000-0002-9934-9530 ; 0000-0001-5171-7798 ; 0000-0001-9911-4275 ; 0000-0002-1247-062X ; 0000-0002-5298-3112 ; 0000-0003-1403-5901 ; 0000-0003-3931-0949 ; 0000-0002-4053-8927 ; 0000-0003-1635-2679 ; 0000-0002-7309-8489 ; 0000-0001-8270-3233 ; 0000-0003-3107-2579 ; 0000-0002-2253-0278 ; 0000-0002-2432-7070 ; 0000-0001-7598-8621 ; 0000000339310949 ; 0000000190712279 ; 0000000299349530 ; 0000000316352679 ; 0000000229352363 ; 0000000151717798 ; 0000000252983112 ; 0000000199114275 ; 000000021247062X ; 0000000297860538 ; 0000000314035901 ; 0000000286581007 ; 0000000331072579 ; 0000000222530278 ; 0000000341463637 ; 0000000240538927 ; 0000000224327070 ; 0000000175988621 ; 0000000182703233 ; 0000000273098489 ; 000000032144536X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35511943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1980748$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebadi, S</creatorcontrib><creatorcontrib>Keesling, A</creatorcontrib><creatorcontrib>Cain, M</creatorcontrib><creatorcontrib>Wang, T T</creatorcontrib><creatorcontrib>Levine, H</creatorcontrib><creatorcontrib>Bluvstein, D</creatorcontrib><creatorcontrib>Semeghini, G</creatorcontrib><creatorcontrib>Omran, A</creatorcontrib><creatorcontrib>Liu, J-G</creatorcontrib><creatorcontrib>Samajdar, R</creatorcontrib><creatorcontrib>Luo, X-Z</creatorcontrib><creatorcontrib>Nash, B</creatorcontrib><creatorcontrib>Gao, X</creatorcontrib><creatorcontrib>Barak, B</creatorcontrib><creatorcontrib>Farhi, E</creatorcontrib><creatorcontrib>Sachdev, S</creatorcontrib><creatorcontrib>Gemelke, N</creatorcontrib><creatorcontrib>Zhou, L</creatorcontrib><creatorcontrib>Choi, S</creatorcontrib><creatorcontrib>Pichler, H</creatorcontrib><creatorcontrib>Wang, S-T</creatorcontrib><creatorcontrib>Greiner, M</creatorcontrib><creatorcontrib>Vuletić, V</creatorcontrib><creatorcontrib>Lukin, M D</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><title>Quantum optimization of maximum independent set using Rydberg atom arrays</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.</description><subject>Science & Technology - Other Topics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlbP3iR48rJtPnaT3aOIH4WCKHoO2WS2RrpJ3WTB-uvd0tXLDMw888I8CF1SMqeUiUU0DryBua6DKEp5hKaUVEVWMcKP0ZQQLrKSyGKCzmL8JGTYVfwUTXhRUFrlfIqWL732qW9x2CbXuh-dXPA4NLjV364d5s5b2MJQfMIREu6j82v8urM1dGusU2ix7jq9i-fopNGbCBdjn6H3h_u3u6ds9fy4vLtdZSbnNGWUAidNXjNZ1w0nsjYVyJqVjTCSVNZYzrQUlFtLjLYaNCsEkzmX1uiqZCWfoetDbojJqUFAAvNhgvdgkqLV8G6-h24O0LYLXz3EpFoXDWw22kPoo2JCDKKIKPMBXRxQ04UYO2jUtnOt7naKErWXrEbJapQ8XFyN4X3dgv3n_6zyXzteexA</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Ebadi, S</creator><creator>Keesling, A</creator><creator>Cain, M</creator><creator>Wang, T T</creator><creator>Levine, H</creator><creator>Bluvstein, D</creator><creator>Semeghini, G</creator><creator>Omran, A</creator><creator>Liu, J-G</creator><creator>Samajdar, R</creator><creator>Luo, X-Z</creator><creator>Nash, B</creator><creator>Gao, X</creator><creator>Barak, B</creator><creator>Farhi, E</creator><creator>Sachdev, S</creator><creator>Gemelke, N</creator><creator>Zhou, L</creator><creator>Choi, S</creator><creator>Pichler, H</creator><creator>Wang, S-T</creator><creator>Greiner, M</creator><creator>Vuletić, V</creator><creator>Lukin, M D</creator><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9071-2279</orcidid><orcidid>https://orcid.org/0000-0002-9786-0538</orcidid><orcidid>https://orcid.org/0000-0003-4146-3637</orcidid><orcidid>https://orcid.org/0000-0003-2144-536X</orcidid><orcidid>https://orcid.org/0000-0002-2935-2363</orcidid><orcidid>https://orcid.org/0000-0002-8658-1007</orcidid><orcidid>https://orcid.org/0000-0002-9934-9530</orcidid><orcidid>https://orcid.org/0000-0001-5171-7798</orcidid><orcidid>https://orcid.org/0000-0001-9911-4275</orcidid><orcidid>https://orcid.org/0000-0002-1247-062X</orcidid><orcidid>https://orcid.org/0000-0002-5298-3112</orcidid><orcidid>https://orcid.org/0000-0003-1403-5901</orcidid><orcidid>https://orcid.org/0000-0003-3931-0949</orcidid><orcidid>https://orcid.org/0000-0002-4053-8927</orcidid><orcidid>https://orcid.org/0000-0003-1635-2679</orcidid><orcidid>https://orcid.org/0000-0002-7309-8489</orcidid><orcidid>https://orcid.org/0000-0001-8270-3233</orcidid><orcidid>https://orcid.org/0000-0003-3107-2579</orcidid><orcidid>https://orcid.org/0000-0002-2253-0278</orcidid><orcidid>https://orcid.org/0000-0002-2432-7070</orcidid><orcidid>https://orcid.org/0000-0001-7598-8621</orcidid><orcidid>https://orcid.org/0000000339310949</orcidid><orcidid>https://orcid.org/0000000190712279</orcidid><orcidid>https://orcid.org/0000000299349530</orcidid><orcidid>https://orcid.org/0000000316352679</orcidid><orcidid>https://orcid.org/0000000229352363</orcidid><orcidid>https://orcid.org/0000000151717798</orcidid><orcidid>https://orcid.org/0000000252983112</orcidid><orcidid>https://orcid.org/0000000199114275</orcidid><orcidid>https://orcid.org/000000021247062X</orcidid><orcidid>https://orcid.org/0000000297860538</orcidid><orcidid>https://orcid.org/0000000314035901</orcidid><orcidid>https://orcid.org/0000000286581007</orcidid><orcidid>https://orcid.org/0000000331072579</orcidid><orcidid>https://orcid.org/0000000222530278</orcidid><orcidid>https://orcid.org/0000000341463637</orcidid><orcidid>https://orcid.org/0000000240538927</orcidid><orcidid>https://orcid.org/0000000224327070</orcidid><orcidid>https://orcid.org/0000000175988621</orcidid><orcidid>https://orcid.org/0000000182703233</orcidid><orcidid>https://orcid.org/0000000273098489</orcidid><orcidid>https://orcid.org/000000032144536X</orcidid></search><sort><creationdate>20220610</creationdate><title>Quantum optimization of maximum independent set using Rydberg atom arrays</title><author>Ebadi, S ; Keesling, A ; Cain, M ; Wang, T T ; Levine, H ; Bluvstein, D ; Semeghini, G ; Omran, A ; Liu, J-G ; Samajdar, R ; Luo, X-Z ; Nash, B ; Gao, X ; Barak, B ; Farhi, E ; Sachdev, S ; Gemelke, N ; Zhou, L ; Choi, S ; Pichler, H ; Wang, S-T ; Greiner, M ; Vuletić, V ; Lukin, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-11e30f4b27bbf307bc9e7b28f6c709dcd32a7613dd0cadaea25627437dca98283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebadi, S</creatorcontrib><creatorcontrib>Keesling, A</creatorcontrib><creatorcontrib>Cain, M</creatorcontrib><creatorcontrib>Wang, T T</creatorcontrib><creatorcontrib>Levine, H</creatorcontrib><creatorcontrib>Bluvstein, D</creatorcontrib><creatorcontrib>Semeghini, G</creatorcontrib><creatorcontrib>Omran, A</creatorcontrib><creatorcontrib>Liu, J-G</creatorcontrib><creatorcontrib>Samajdar, R</creatorcontrib><creatorcontrib>Luo, X-Z</creatorcontrib><creatorcontrib>Nash, B</creatorcontrib><creatorcontrib>Gao, X</creatorcontrib><creatorcontrib>Barak, B</creatorcontrib><creatorcontrib>Farhi, E</creatorcontrib><creatorcontrib>Sachdev, S</creatorcontrib><creatorcontrib>Gemelke, N</creatorcontrib><creatorcontrib>Zhou, L</creatorcontrib><creatorcontrib>Choi, S</creatorcontrib><creatorcontrib>Pichler, H</creatorcontrib><creatorcontrib>Wang, S-T</creatorcontrib><creatorcontrib>Greiner, M</creatorcontrib><creatorcontrib>Vuletić, V</creatorcontrib><creatorcontrib>Lukin, M D</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebadi, S</au><au>Keesling, A</au><au>Cain, M</au><au>Wang, T T</au><au>Levine, H</au><au>Bluvstein, D</au><au>Semeghini, G</au><au>Omran, A</au><au>Liu, J-G</au><au>Samajdar, R</au><au>Luo, X-Z</au><au>Nash, B</au><au>Gao, X</au><au>Barak, B</au><au>Farhi, E</au><au>Sachdev, S</au><au>Gemelke, N</au><au>Zhou, L</au><au>Choi, S</au><au>Pichler, H</au><au>Wang, S-T</au><au>Greiner, M</au><au>Vuletić, V</au><au>Lukin, M D</au><aucorp>Krell Institute, Ames, IA (United States)</aucorp><aucorp>Harvard Univ., Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum optimization of maximum independent set using Rydberg atom arrays</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>376</volume><issue>6598</issue><spage>1209</spage><epage>1215</epage><pages>1209-1215</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>35511943</pmid><doi>10.1126/science.abo6587</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9071-2279</orcidid><orcidid>https://orcid.org/0000-0002-9786-0538</orcidid><orcidid>https://orcid.org/0000-0003-4146-3637</orcidid><orcidid>https://orcid.org/0000-0003-2144-536X</orcidid><orcidid>https://orcid.org/0000-0002-2935-2363</orcidid><orcidid>https://orcid.org/0000-0002-8658-1007</orcidid><orcidid>https://orcid.org/0000-0002-9934-9530</orcidid><orcidid>https://orcid.org/0000-0001-5171-7798</orcidid><orcidid>https://orcid.org/0000-0001-9911-4275</orcidid><orcidid>https://orcid.org/0000-0002-1247-062X</orcidid><orcidid>https://orcid.org/0000-0002-5298-3112</orcidid><orcidid>https://orcid.org/0000-0003-1403-5901</orcidid><orcidid>https://orcid.org/0000-0003-3931-0949</orcidid><orcidid>https://orcid.org/0000-0002-4053-8927</orcidid><orcidid>https://orcid.org/0000-0003-1635-2679</orcidid><orcidid>https://orcid.org/0000-0002-7309-8489</orcidid><orcidid>https://orcid.org/0000-0001-8270-3233</orcidid><orcidid>https://orcid.org/0000-0003-3107-2579</orcidid><orcidid>https://orcid.org/0000-0002-2253-0278</orcidid><orcidid>https://orcid.org/0000-0002-2432-7070</orcidid><orcidid>https://orcid.org/0000-0001-7598-8621</orcidid><orcidid>https://orcid.org/0000000339310949</orcidid><orcidid>https://orcid.org/0000000190712279</orcidid><orcidid>https://orcid.org/0000000299349530</orcidid><orcidid>https://orcid.org/0000000316352679</orcidid><orcidid>https://orcid.org/0000000229352363</orcidid><orcidid>https://orcid.org/0000000151717798</orcidid><orcidid>https://orcid.org/0000000252983112</orcidid><orcidid>https://orcid.org/0000000199114275</orcidid><orcidid>https://orcid.org/000000021247062X</orcidid><orcidid>https://orcid.org/0000000297860538</orcidid><orcidid>https://orcid.org/0000000314035901</orcidid><orcidid>https://orcid.org/0000000286581007</orcidid><orcidid>https://orcid.org/0000000331072579</orcidid><orcidid>https://orcid.org/0000000222530278</orcidid><orcidid>https://orcid.org/0000000341463637</orcidid><orcidid>https://orcid.org/0000000240538927</orcidid><orcidid>https://orcid.org/0000000224327070</orcidid><orcidid>https://orcid.org/0000000175988621</orcidid><orcidid>https://orcid.org/0000000182703233</orcidid><orcidid>https://orcid.org/0000000273098489</orcidid><orcidid>https://orcid.org/000000032144536X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-06, Vol.376 (6598), p.1209-1215 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1980748 |
source | American Association for the Advancement of Science |
subjects | Science & Technology - Other Topics |
title | Quantum optimization of maximum independent set using Rydberg atom arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20optimization%20of%20maximum%20independent%20set%20using%20Rydberg%20atom%20arrays&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ebadi,%20S&rft.aucorp=Krell%20Institute,%20Ames,%20IA%20(United%20States)&rft.date=2022-06-10&rft.volume=376&rft.issue=6598&rft.spage=1209&rft.epage=1215&rft.pages=1209-1215&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abo6587&rft_dat=%3Cproquest_osti_%3E2661090684%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661090684&rft_id=info:pmid/35511943&rfr_iscdi=true |