Quantum optimization of maximum independent set using Rydberg atom arrays

Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-06, Vol.376 (6598), p.1209-1215
Hauptverfasser: Ebadi, S, Keesling, A, Cain, M, Wang, T T, Levine, H, Bluvstein, D, Semeghini, G, Omran, A, Liu, J-G, Samajdar, R, Luo, X-Z, Nash, B, Gao, X, Barak, B, Farhi, E, Sachdev, S, Gemelke, N, Zhou, L, Choi, S, Pichler, H, Wang, S-T, Greiner, M, Vuletić, V, Lukin, M D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abo6587