Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations

Membranes have the potential to substantially reduce energy consumption of industrial chemical separations, but their implementation has been limited owing to a performance upper bound-the trade-off between permeability and selectivity. Although recent developments of highly permeable polymer membra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-03, Vol.375 (6587), p.1390-1392
Hauptverfasser: Lai, Holden W H, Benedetti, Francesco M, Ahn, Jun Myun, Robinson, Ashley M, Wang, Yingge, Pinnau, Ingo, Smith, Zachary P, Xia, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membranes have the potential to substantially reduce energy consumption of industrial chemical separations, but their implementation has been limited owing to a performance upper bound-the trade-off between permeability and selectivity. Although recent developments of highly permeable polymer membranes have advanced the upper bounds for various gas pairs, these polymers typically exhibit limited selectivity. We report a class of hydrocarbon ladder polymers that can achieve both high selectivity and high permeability in membrane separations for many industrially relevant gas mixtures. Additionally, their corresponding films exhibit desirable mechanical and thermal properties. Tuning of the ladder polymer backbone configuration was found to have a profound effect on separation performance and aging behavior.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abl7163