A Unified Power-Setpoint Tracking Algorithm for Utility-Scale PV Systems With Power Reserves and Fast Frequency Response Capabilities

This paper presents a fast power-setpoint tracking algorithm to enable utility-scale photovoltaic (PV) systems to provide high quality grid services such as power reserves and fast frequency response. The algorithm unites maximum power-point estimation (MPPE) with flexible power-point tracking (FPPT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2022-01, Vol.13 (1), p.479-490
Hauptverfasser: Paduani, Victor Daldegan, Yu, Hui, Xu, Bei, Lu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a fast power-setpoint tracking algorithm to enable utility-scale photovoltaic (PV) systems to provide high quality grid services such as power reserves and fast frequency response. The algorithm unites maximum power-point estimation (MPPE) with flexible power-point tracking (FPPT) control to improve the performance of both algorithms, achieving fast and accurate PV power-setpoint tracking even under rapid solar irradiance changes. The MPPE is developed using a real-time, nonlinear curve-fitting approach based on the Levenberg-Marquardt algorithm. A modified adaptive FPPT based on the Perturb and Observe technique is developed for the power-setpoint tracking. By using MPPE to decouple the impact of irradiance changes on the measured PV output power, we develop a fast convergence technique for tracking power-reference changes within three FPPT iterations. Furthermore, to limit the maximum output power ripple, a new design is introduced for the steady-state voltage step size of the adaptive FPPT. The proposed algorithm is implemented on a testbed consisting of a 500 kVA three-phase, single-stage, utility-scale PV system on the OPAL-RT eMEGASIM platform. Results show that the proposed method outperforms the state-of-the-art.
ISSN:1949-3029
1949-3037
DOI:10.1109/TSTE.2021.3117688