Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line

Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-10, Vol.127 (15), p.1-155101, Article 155101
Hauptverfasser: Pyakurel, P. S., Shay, M. A., Drake, J. F., Phan, T. D., Cassak, P. A., Verniero, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155101
container_issue 15
container_start_page 1
container_title Physical review letters
container_volume 127
creator Pyakurel, P. S.
Shay, M. A.
Drake, J. F.
Phan, T. D.
Cassak, P. A.
Verniero, J. L.
description Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane ( z ) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z , enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.
doi_str_mv 10.1103/PhysRevLett.127.155101
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1980215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584781575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-e4e29e2f7b5d7841bc7918c7459aeb5633a7f144524899cd67c588d01421077a3</originalsourceid><addsrcrecordid>eNpdkUFLYzEUhYM4YO34F-ShGzevk5uXNMlSxKrwZIYyA7MLaXpfG2kTTVLFf29KXYiryz18HM7hEHIOdAJAu19_1u95jq89ljIBJicgBFA4IiOgUrcSgB-TEaUdtJpSeUJOc36ilAKbqhF5mNlcMDWzmLZNHJrbDbqSYmge7Spg8a6Zo4shVNVX9c2XdWObmQ--YNNjWNX_f9v7gD_Jj8FuMp593jH5N7v9e3Pf9r_vHm6u-9Z1vCstcmQa2SAXYikVh4WTGpSTXGiLCzHtOisH4FwwrrR2y6l0QqklBc5qH2m7Mbk4-MZcvMmuBnHrz4gGtKIMRIWuDtBzii87zMVsfXa42diAcZcNE4pLBULu0ctv6FPcpVAr7CnGWDXUlZoeKJdizgkH85z81qZ3A9TsZzBfZjB1BnOYofsAK7t7Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582220219</pqid></control><display><type>article</type><title>Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pyakurel, P. S. ; Shay, M. A. ; Drake, J. F. ; Phan, T. D. ; Cassak, P. A. ; Verniero, J. L.</creator><creatorcontrib>Pyakurel, P. S. ; Shay, M. A. ; Drake, J. F. ; Phan, T. D. ; Cassak, P. A. ; Verniero, J. L. ; West Virginia Univ., Morgantown, WV (United States) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane ( z ) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z , enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.155101</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Current sheets ; Diffusion rate ; Electrons ; magnetic reconnection ; magnetohydrodynamic turbulence ; Magnetosheath ; Particle in cell technique ; Physics ; plasma turbulence ; space &amp; astrophysical plasma ; space science ; Turbulence</subject><ispartof>Physical review letters, 2021-10, Vol.127 (15), p.1-155101, Article 155101</ispartof><rights>Copyright American Physical Society Oct 8, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-e4e29e2f7b5d7841bc7918c7459aeb5633a7f144524899cd67c588d01421077a3</citedby><cites>FETCH-LOGICAL-c343t-e4e29e2f7b5d7841bc7918c7459aeb5633a7f144524899cd67c588d01421077a3</cites><orcidid>0000-0003-4832-7638 ; 0000000348327638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1980215$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyakurel, P. S.</creatorcontrib><creatorcontrib>Shay, M. A.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>Phan, T. D.</creatorcontrib><creatorcontrib>Cassak, P. A.</creatorcontrib><creatorcontrib>Verniero, J. L.</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line</title><title>Physical review letters</title><description>Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane ( z ) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z , enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Current sheets</subject><subject>Diffusion rate</subject><subject>Electrons</subject><subject>magnetic reconnection</subject><subject>magnetohydrodynamic turbulence</subject><subject>Magnetosheath</subject><subject>Particle in cell technique</subject><subject>Physics</subject><subject>plasma turbulence</subject><subject>space &amp; astrophysical plasma</subject><subject>space science</subject><subject>Turbulence</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUFLYzEUhYM4YO34F-ShGzevk5uXNMlSxKrwZIYyA7MLaXpfG2kTTVLFf29KXYiryz18HM7hEHIOdAJAu19_1u95jq89ljIBJicgBFA4IiOgUrcSgB-TEaUdtJpSeUJOc36ilAKbqhF5mNlcMDWzmLZNHJrbDbqSYmge7Spg8a6Zo4shVNVX9c2XdWObmQ--YNNjWNX_f9v7gD_Jj8FuMp593jH5N7v9e3Pf9r_vHm6u-9Z1vCstcmQa2SAXYikVh4WTGpSTXGiLCzHtOisH4FwwrrR2y6l0QqklBc5qH2m7Mbk4-MZcvMmuBnHrz4gGtKIMRIWuDtBzii87zMVsfXa42diAcZcNE4pLBULu0ctv6FPcpVAr7CnGWDXUlZoeKJdizgkH85z81qZ3A9TsZzBfZjB1BnOYofsAK7t7Jw</recordid><startdate>20211008</startdate><enddate>20211008</enddate><creator>Pyakurel, P. S.</creator><creator>Shay, M. A.</creator><creator>Drake, J. F.</creator><creator>Phan, T. D.</creator><creator>Cassak, P. A.</creator><creator>Verniero, J. L.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4832-7638</orcidid><orcidid>https://orcid.org/0000000348327638</orcidid></search><sort><creationdate>20211008</creationdate><title>Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line</title><author>Pyakurel, P. S. ; Shay, M. A. ; Drake, J. F. ; Phan, T. D. ; Cassak, P. A. ; Verniero, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-e4e29e2f7b5d7841bc7918c7459aeb5633a7f144524899cd67c588d01421077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Current sheets</topic><topic>Diffusion rate</topic><topic>Electrons</topic><topic>magnetic reconnection</topic><topic>magnetohydrodynamic turbulence</topic><topic>Magnetosheath</topic><topic>Particle in cell technique</topic><topic>Physics</topic><topic>plasma turbulence</topic><topic>space &amp; astrophysical plasma</topic><topic>space science</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyakurel, P. S.</creatorcontrib><creatorcontrib>Shay, M. A.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>Phan, T. D.</creatorcontrib><creatorcontrib>Cassak, P. A.</creatorcontrib><creatorcontrib>Verniero, J. L.</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pyakurel, P. S.</au><au>Shay, M. A.</au><au>Drake, J. F.</au><au>Phan, T. D.</au><au>Cassak, P. A.</au><au>Verniero, J. L.</au><aucorp>West Virginia Univ., Morgantown, WV (United States)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line</atitle><jtitle>Physical review letters</jtitle><date>2021-10-08</date><risdate>2021</risdate><volume>127</volume><issue>15</issue><spage>1</spage><epage>155101</epage><pages>1-155101</pages><artnum>155101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane ( z ) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z , enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.155101</doi><orcidid>https://orcid.org/0000-0003-4832-7638</orcidid><orcidid>https://orcid.org/0000000348327638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-10, Vol.127 (15), p.1-155101, Article 155101
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1980215
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects ASTRONOMY AND ASTROPHYSICS
Current sheets
Diffusion rate
Electrons
magnetic reconnection
magnetohydrodynamic turbulence
Magnetosheath
Particle in cell technique
Physics
plasma turbulence
space & astrophysical plasma
space science
Turbulence
title Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20Form%20of%20Electron%20Magnetic%20Reconnection%20with%20a%20Finite%20Length%20X-Line&rft.jtitle=Physical%20review%20letters&rft.au=Pyakurel,%20P.%20S.&rft.aucorp=West%20Virginia%20Univ.,%20Morgantown,%20WV%20(United%20States)&rft.date=2021-10-08&rft.volume=127&rft.issue=15&rft.spage=1&rft.epage=155101&rft.pages=1-155101&rft.artnum=155101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.155101&rft_dat=%3Cproquest_osti_%3E2584781575%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582220219&rft_id=info:pmid/&rfr_iscdi=true