Impact of late-time neutrino emission on the diffuse supernova neutrino background

In the absence of high-statistics supernova neutrino measurements, estimates of the diffuse supernova neutrino background (DSNB) hinge on the precision of simulations of core-collapse supernovae. Understanding the cooling phase of protoneutron star (PNS) evolution (≳ 1 s after core bounce) is crucia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2022-08, Vol.106 (4), Article 043026
Hauptverfasser: Ekanger, Nick, Horiuchi, Shunsaku, Kotake, Kei, Sumiyoshi, Kohsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the absence of high-statistics supernova neutrino measurements, estimates of the diffuse supernova neutrino background (DSNB) hinge on the precision of simulations of core-collapse supernovae. Understanding the cooling phase of protoneutron star (PNS) evolution (≳ 1 s after core bounce) is crucial, since approximately 50% of the energy liberated by neutrinos is emitted during the cooling phase. We model the cooling phase with a hybrid method by combining the neutrino emission predicted by 3D hydrodynamic simulations with several cooling-phase estimates, including a novel two-parameter correlation depending on the final baryonic PNS mass and the time of shock revival. We find that the predicted DSNB event rate at Super-Kamiokande can vary by a factor of ~2–3 depending on the cooling-phase treatment. Here we also find that except for one cooling estimate, the range in predicted DSNB events is largely driven by the uncertainty in the neutrino mean energy. With a good understanding of the late-time neutrino emission, more precise DSNB estimates can be made for the next generation of DSNB searches.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.106.043026