Non-Loudon-Fleury Raman scattering in spin-orbit coupled Mott insulators

We revisit the theory of magnetic Raman scattering in Mott insulators with strong spin-orbit coupling, with a major focus on Kitaev materials. We show that Kitaev materials with bond-anisotropic interactions are generally expected to show both one- and two-magnon responses. It is further shown that,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-10, Vol.104 (14), Article 144412
Hauptverfasser: Yang, Yang, Li, Mengqun, Rousochatzakis, Ioannis, Perkins, Natalia B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the theory of magnetic Raman scattering in Mott insulators with strong spin-orbit coupling, with a major focus on Kitaev materials. We show that Kitaev materials with bond-anisotropic interactions are generally expected to show both one- and two-magnon responses. It is further shown that, in order to obtain the correct leading contributions to the Raman vertex operator R, one must take into account the precise, photon-assisted microscopic hopping processes of the electrons and that, in systems with multiple hopping paths, R contains terms beyond those appearing in the traditional Loudon-Fleury theory. Most saliently, a numerical implementation of the revised formalism to the case of the three-dimensional hyperhoneycomb Kitaev material β−Li2 IrO3 reveals that the non-Loudon-Fleury scattering terms actually dominate the Raman intensity. In addition, they induce a qualitative modification of the polarization dependence, including, e.g., the emergence of a sharp one-magnon peak at low energies, which is not expected in the traditional Loudon-Fleury theory. This peak is shown to arise from microscopic photon-assisted tunneling processes that are of similar type with the ones leading to the symmetric off-diagonal interaction Γ(known to be present in many Kitaev materials), but take the form of a bond-directional magnetic dipole term in the Raman vertex. These results are expected to apply across all Kitaev materials and mark a drastic change of paradigm for the understanding of Raman scattering in materials with strong spin-orbit coupling and multiple exchange paths.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.104.144412