Tuning valley degeneracy with band inversion

Valley degeneracy is a key feature of the electronic structure that benefits the thermoelectric performance of a material. Despite recent studies which claim that high valley degeneracy can be achieved with inverted bands, our analysis of rock-salt IV–VI compounds using first-principles calculations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-12, Vol.10 (3)
Hauptverfasser: Toriyama, Michael Y., Brod, Madison K., Gomes, Lídia C., Bipasha, Ferdaushi A., Assaf, Badih A., Ertekin, Elif, Snyder, G. Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Valley degeneracy is a key feature of the electronic structure that benefits the thermoelectric performance of a material. Despite recent studies which claim that high valley degeneracy can be achieved with inverted bands, our analysis of rock-salt IV–VI compounds using first-principles calculations and k•p perturbation theory demonstrates that mere band inversion is an insufficient condition for high valley degeneracy; rather, there is a critical degree to which the bands must be inverted to induce multiple carrier pockets. The so-called “band inversion parameter” is formalized as a chemically-tunable property, offering a design route to achieving high valley degeneracy in compounds with inverted bands. In conclusion, we predict that the valley degeneracy of rock-salt IV–VI compounds can be increased from NV = 4 to NV = 24, which could result in a corresponding increase in the thermoelectric figure of merit zT.
ISSN:2050-7488
2050-7496