High-performance thermoelectrics and challenges for practical devices
Thermoelectric materials can be potentially employed in solid-state devices that harvest waste heat and convert it to electrical power, thereby improving the efficiency of fuel utilization. The spectacular increases in the efficiencies of these materials achieved over the past decade have raised exp...
Gespeichert in:
Veröffentlicht in: | Nature materials 2022-05, Vol.21 (5), p.503-513 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoelectric materials can be potentially employed in solid-state devices that harvest waste heat and convert it to electrical power, thereby improving the efficiency of fuel utilization. The spectacular increases in the efficiencies of these materials achieved over the past decade have raised expectations regarding the use of thermoelectric generators in various energy saving and energy management applications, especially at mid to high temperature (400–900 °C). However, several important issues that prevent successful thermoelectric generator commercialization remain unresolved, in good part because of the lack of a research roadmap.
Thermoelectric materials can generate energy from a heat differential. This Review provides an overview of mid- to high-temperature thermoelectrics, their application in modules, and the issues that need to be addressed to enable commercial implementation of state-of-the-art materials. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/s41563-021-01109-w |