BIPSPI+: Mining Type-Specific Datasets of Protein Complexes to Improve Protein Binding Site Prediction
[Display omitted] •BIPSPI+ is a web server for partner-specific binding site prediction.•BIPSPI+ exhibits enhanced performance when compared to the original version.•Different BIPSPI+ models were trained for homocomplexes and heterocomplexes, offering better performance for each type.•BIPSPI+ can de...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2022-06, Vol.434 (11), p.167556-167556, Article 167556 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•BIPSPI+ is a web server for partner-specific binding site prediction.•BIPSPI+ exhibits enhanced performance when compared to the original version.•Different BIPSPI+ models were trained for homocomplexes and heterocomplexes, offering better performance for each type.•BIPSPI+ can deal with three different types of inputs: sequence-sequence, structure-structure and sequence-structure.•BIPSPI+ integrates a guided protein-protein docking tool.
Computational approaches for predicting protein-protein interfaces are extremely useful for understanding and modelling the quaternary structure of protein assemblies. In particular, partner-specific binding site prediction methods allow delineating the specific residues that compose the interface of protein complexes. In recent years, new machine learning and other algorithmic approaches have been proposed to solve this problem. However, little effort has been made in finding better training datasets to improve the performance of these methods. With the aim of vindicating the importance of the training set compilation procedure, in this work we present BIPSPI+, a new version of our original server trained on carefully curated datasets that outperforms our original predictor. We show how prediction performance can be improved by selecting specific datasets that better describe particular types of protein interactions and interfaces (e.g. homo/hetero). In addition, our upgraded web server offers a new set of functionalities such as the sequence-structure prediction mode, hetero- or homo-complex specialization and the guided docking tool that allows to compute 3D quaternary structure poses using the predicted interfaces. BIPSPI+ is freely available at https://bipspi.cnb.csic.es. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2022.167556 |