Thermodynamic properties of Gd-Bi alloys determined by emf measurements in LiCl-KCl-GdCl3 electrolyte
Thermodynamic properties of binary Gd-Bi alloys (mole fraction, xGd = 0.02–0.35) were determined using electromotive force (emf) measurements in molten LiCl-KCl-GdCl3 electrolyte in complement with structural, microstructural, and thermal characterization. X-ray diffractometry (XRD) and scanning ele...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-12, Vol.886 (C), p.161229, Article 161229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermodynamic properties of binary Gd-Bi alloys (mole fraction, xGd = 0.02–0.35) were determined using electromotive force (emf) measurements in molten LiCl-KCl-GdCl3 electrolyte in complement with structural, microstructural, and thermal characterization. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) identified the phase constituents of Gd-Bi alloys (xGd = 0.02–0.35) as Bi matrix and GdBi compound. According to differential scanning calorimetry (DSC) measurements up to 1250 K, a eutectic transition [L = Bi + GdBi] was observed at 543 K but the reported peritectic transition [L + GdBi = GdBi2] was not detected, suggesting the absence of the GdBi2 compound. Based on structural, microstructural, and thermal characterization of Gd-Bi alloys (xGd = 0.02–0.35), the GdBi2 compound was not detected, and its thermodynamic stability is questionable. The emf of Gd-Bi alloy (xGd = 0.16) at 700–1048 K relative to Gd(s) was measured by electrodepositing pure Gd metal at 25 K increments. The emf values of Gd-Bi alloys were determined via coulometric titration of Gd into liquid Bi using a two-phase [L + GdBi] alloy as a reference electrode at 773–973 K. The solubility of Gd in liquid Bi was also estimated to be 0.50 mol% (773 K), 0.99 mol% (873 K), and 2.21 mol% (973 K) and the excess partial molar Gibbs energy (∆G̅Gdex) of liquid Gd-Bi alloys was as low as 65 kJ mol–1, indicating strong chemical interactions between Gd and Bi.
•Thermodynamic properties of Gd-Bi alloys are established via emf measurements.•The GdBi2 compound is not a thermodynamically stable compound.•Phase behavior of Gd-Bi alloys is established via XRD, SED-EDS, and DSC.•A method for reliable emf measurements for Gd-Bi alloys is established.•Two-phase Gd-Bi alloys (liquid + GdBi) exhibit a highly stable reference potential. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2021.161229 |