Intra-annual variation in microclimatic conditions in relation to vegetation type and structure in two tropical dry forests undergoing secondary succession
Microclimate acts as a strong filter on species performance in restored and regenerating forests, particularly in seasonally dry tropical forests (SDTF). Yet few studies have measured microclimate patterns across succession in SDTF. Furthermore, although dynamic vegetation models simulate microclima...
Gespeichert in:
Veröffentlicht in: | Forest ecology and management 2022-03, Vol.511 (C) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microclimate acts as a strong filter on species performance in restored and regenerating forests, particularly in seasonally dry tropical forests (SDTF). Yet few studies have measured microclimate patterns across succession in SDTF. Furthermore, although dynamic vegetation models simulate microclimate, evaluation of these simulated variables with field observations has been relatively uncommon. Here, we investigated the seasonal patterns of soil temperature and soil water in naturally regenerated and planted successional vegetation in SDTF in Costa Rica and Puerto Rico, using complementary approaches of intensive field observations and simulation modeling with the Ecosystem Demography model. We found that plots representing later successional stages were wetter on average, but only during the dry season. During the wet season, mean soil water did not differ across vegetation types, but open, early successional vegetation experienced more frequent extreme wet and dry conditions than older forest and plantations. Soil temperature tended to decline with forest structure, and later successional vegetation also experienced less extreme daily temperature fluctuations. Basal area and leaf area index were the best predictors of differences in soil water and temperature across plots. Model simulations were consistent with observations of wet season soil temperature and soil water, but the model failed to reproduce dry season soil moisture dynamics, suggesting that further work is needed to reduce model biases in microclimate variables. Collectively, our results imply that common assumptions about how microclimates influence successional processes in SDTF should be revisited. |
---|---|
ISSN: | 0378-1127 1872-7042 |