Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells

The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (50), p.e2006292-n/a
Hauptverfasser: Xiao, Fei, Wang, Yu‐Cheng, Wu, Zhi‐Peng, Chen, Guangyu, Yang, Fei, Zhu, Shangqian, Siddharth, Kumar, Kong, Zhijie, Lu, Aolin, Li, Jin‐Cheng, Zhong, Chuan‐Jian, Zhou, Zhi‐You, Shao, Minhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low‐cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed. The development of fuel cells is of great significance for achieving a sustainable society. Recent progress in cathodic electrocatalysts for proton exchange membrane fuel cells and anodic and cathodic electrocatalysts for alkaline exchange membrane fuel cells is summarized. The rational design strategies, structure evolution, activities, fuel cell performance, and durability of noble‐metal‐ and non‐noble‐metal‐based electrocatalysts are discussed.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202006292