On the Performance of Detecting Injection of Fabricated Messages into the CAN Bus

There have been several public demonstrations of attacks on connected vehicles showing the ability of an attacker to take control of a targeted vehicle by injecting messages into their Controller Area Network (CAN) bus. In this article, using injected speed reading and Revolutions Per Minute (RPM) r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2020-04, Vol.19 (1)
Hauptverfasser: Othmane, Lotfi ben, Dhulipala, Lalitha, Abdelkhalek, Moataz, Multari, Nicholas, Govindarasu, Manimaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There have been several public demonstrations of attacks on connected vehicles showing the ability of an attacker to take control of a targeted vehicle by injecting messages into their Controller Area Network (CAN) bus. In this article, using injected speed reading and Revolutions Per Minute (RPM) reading messages in in-motion vehicle, we examine the ability of the Pearson correlation and the unsupervised learning methods k-means clustering and Hidden Markov Model (HMM) to differentiate ’no-attack’ and ’under-attack’ states of the given vehicle. We found that the Pearson correlation distinguishes the two states, the k-means clustering method has an acceptable accuracy but high false positive rate and HMM detects attacks with acceptable detection rate but has a high false positive in detecting attacks from speed readings when there is no attack. The accuracy of these unsupervised learning methods are comparable to the ones of the supervised learning methods used by CAN bus Intrusion Detection System (IDS) suppliers. In addition, the article shows that studying CAN anomaly detection techniques using off-vehicle test facilities may not properly evaluate the performance of the detection techniques. Finally, the results suggest using other features besides the data content of the CAN messages and integrate knowledge about how the Electronic Control Units (ECUs) collaborate in building effective techniques for the detection of injection of fabricated message attacks.
ISSN:1545-5971