Monotonic multi-state quantum f -divergences
We use the Tomita–Takesaki modular theory and the Kubo–Ando operator mean to write down a large class of multi-state quantum f-divergences and prove that they satisfy the data processing inequality. For two states, this class includes the ( α, z)-Rényi divergences, the f-divergences of Petz, and the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2023-04, Vol.64 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the Tomita–Takesaki modular theory and the Kubo–Ando operator mean to write down a large class of multi-state quantum f-divergences and prove that they satisfy the data processing inequality. For two states, this class includes the ( α, z)-Rényi divergences, the f-divergences of Petz, and the Rényi Belavkin-Staszewski relative entropy as special cases. The method used is the interpolation theory of non-commutative [Formula: see text] spaces, and the result applies to general von Neumann algebras, including the local algebra of quantum field theory. We conjecture that these multi-state Rényi divergences have operational interpretations in terms of the optimal error probabilities in asymmetric multi-state quantum state discrimination. |
---|---|
ISSN: | 0022-2488 1089-7658 |