Monotonic multi-state quantum f -divergences

We use the Tomita–Takesaki modular theory and the Kubo–Ando operator mean to write down a large class of multi-state quantum f-divergences and prove that they satisfy the data processing inequality. For two states, this class includes the ( α, z)-Rényi divergences, the f-divergences of Petz, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-04, Vol.64 (4)
Hauptverfasser: Furuya, Keiichiro, Lashkari, Nima, Ouseph, Shoy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the Tomita–Takesaki modular theory and the Kubo–Ando operator mean to write down a large class of multi-state quantum f-divergences and prove that they satisfy the data processing inequality. For two states, this class includes the ( α, z)-Rényi divergences, the f-divergences of Petz, and the Rényi Belavkin-Staszewski relative entropy as special cases. The method used is the interpolation theory of non-commutative [Formula: see text] spaces, and the result applies to general von Neumann algebras, including the local algebra of quantum field theory. We conjecture that these multi-state Rényi divergences have operational interpretations in terms of the optimal error probabilities in asymmetric multi-state quantum state discrimination.
ISSN:0022-2488
1089-7658