Phase transformations and thermal expansion coefficients of unirradiated U-X wt.% Zr (X = 6, 10, 20, 30) measured via neutron diffraction

This work characterizes the crystallographic evolution of unirradiated U-X wt.% Zr (X = 6, 10, 20, 30) while cooling from equilibration, single phase γ-U-Zr, at 900 °C to ambient temperature using time-of-flight neutron diffraction. The β-U phase was unobserved during cooling at 1 °C/min in all allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2023-06, Vol.579 (C), p.154380, Article 154380
Hauptverfasser: Williams, W.J., Vogel, S.C., Okuniewski, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work characterizes the crystallographic evolution of unirradiated U-X wt.% Zr (X = 6, 10, 20, 30) while cooling from equilibration, single phase γ-U-Zr, at 900 °C to ambient temperature using time-of-flight neutron diffraction. The β-U phase was unobserved during cooling at 1 °C/min in all alloys. All alloys followed the phase transformation pathway of γ-U-Zr→γ-U-Zr+α-U→α-U +δ-UZr2 with an observed miscibility gap in γ-U-Zr. The α-U and δ-UZr2 transformation took place simultaneously in the U-30 wt.% Zr sample. These findings strengthen the need to re-approach the U-Zr phase diagram in entirety. Bulk volumetric CTEs agree well with published data, strengthening the quantification of lattice-specific CTEs reported in this study. A compositionally dependent discontinuity in thermal expansion, increasing in magnitude with decreasing U content, occurs during the γ-U-Zr→α-U+δ-UZr2 transformation. The γ-U-Zr lattice parameter was measured to have a compositional dependency. [Display omitted]
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2023.154380