Exponential Decay of Sensitivity in Graph-Structured Nonlinear Programs
We study solution sensitivity for nonlinear programs (NLPs) whose structures are induced by graphs. These NLPs arise in many applications such as dynamic optimization, stochastic optimization, optimization with partial differential equations, and network optimization. We illustrate that for a given...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2022-01, Vol.32 (2), p.1156-1183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study solution sensitivity for nonlinear programs (NLPs) whose structures are induced by graphs. These NLPs arise in many applications such as dynamic optimization, stochastic optimization, optimization with partial differential equations, and network optimization. We illustrate that for a given pair of nodes, the sensitivity of the primal-dual solution at one node against a data perturbation at the other node decays exponentially with respect to the distance between these two nodes on the graph. In other words, the solution sensitivity decays as one moves away from the perturbation point. This result, which we call exponential decay of sensitivity, holds under the strong second-order sufficiency condition and the linear independence constraint qualification. We also present conditions under which the decay rate remains uniformly bounded; this allows us to characterize the sensitivity behavior of NLPs defined over subgraphs of infinite graphs. The theoretical developments are illustrated with numerical examples. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/21M1391079 |