How the existence of unstable neutral media restricts the aspect ratio of cold neutral media?
ABSTRACT The ubiquity of very thin and lengthy cold neutral medium (CNM) has been reported by multiple authors in the H i community. Yet, the reason of how the CNM can be so long and lengthy is still in debate. In this paper, we recognize a new type of instability due to the attractive nature of the...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2023-03, Vol.521 (1), p.230-240 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
The ubiquity of very thin and lengthy cold neutral medium (CNM) has been reported by multiple authors in the H i community. Yet, the reason of how the CNM can be so long and lengthy is still in debate. In this paper, we recognize a new type of instability due to the attractive nature of the pressure force in the unstable phase. We provide a new estimation of the average CNM filament aspect ratio with the consideration of force balances at the phase boundary, which is roughly 5–20 in common CNM environment. We show that most of the cold filaments are less filamentary than what usually predicted via MHD turbulence theory or inferred from observations: The average length of CNM filament is roughly 1/2 of that in isothermal MHD turbulence with similar turbulence conditions. This suggests that the ‘cold filaments’ that are identified in observations might not be in pressure equilibrium or generated via other mechanisms. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stad481 |