GPU-accelerated DNS of compressible turbulent flows
Here, this paper explores strategies to transform an existing CPU-based high-performance computational fluid dynamics solver, HyPar, for compressible flow simulations on emerging exascale heterogeneous (CPU+GPU) computing platforms. The scientific motivation for developing a GPU-enhanced version of...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2022-11, Vol.251 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, this paper explores strategies to transform an existing CPU-based high-performance computational fluid dynamics solver, HyPar, for compressible flow simulations on emerging exascale heterogeneous (CPU+GPU) computing platforms. The scientific motivation for developing a GPU-enhanced version of HyPar is to simulate canonical turbulent flows at the highest resolution possible on such platforms. We show that optimizing memory operations and thread blocks results in 200x speedup of computationally intensive kernels compared with a CPU core. Using multiple GPUs and CUDA-aware MPI communication, we demonstrate both strong and weak scaling of our GPU-based HyPar implementation on the NVIDIA Volta V100 GPUs. We simulate the decay of homogeneous isotropic turbulence in a triply periodic box on grids with up to 10243 points (5.3 billion degrees of freedom) and on up to 1,024 GPUs. We compare the wall times for CPU-only and CPU+GPU simulations. The results presented in the paper are obtained on the Summit and Lassen supercomputers at Oak Ridge and Lawrence Livermore National Laboratories, respectively. |
---|---|
ISSN: | 0045-7930 1879-0747 |