Tractable Data Enriched Distributionally Robust Chance-Constrained Conservation Voltage Reduction

This paper proposes a tractable distributionally robust chance-constrained conservation voltage reduction (DRCC-CVR) method with enriched data-based ambiguity set in unbalanced three-phase distribution systems. The increasing penetration of distributed renewable generation not only brings clean powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2024-01, Vol.39 (1), p.1-15
Hauptverfasser: Zhang, Qianzhi, Bu, Fankun, Guo, Yi, Wang, Zhaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a tractable distributionally robust chance-constrained conservation voltage reduction (DRCC-CVR) method with enriched data-based ambiguity set in unbalanced three-phase distribution systems. The increasing penetration of distributed renewable generation not only brings clean power but also challenges the voltage regulation and energy-saving performance of CVR by introducing high uncertainties to distribution systems. In most cases, the conventional robust optimization methods for CVR only provide conservative solutions. To better consider the impacts of load and PV generation uncertainties on CVR implementation in distribution systems and provide less conservative solutions, this paper develops a data-based DRCC-CVR model with tractable reformulation and data enrichment method. Even though the uncertainties of load and photovoltaic (PV) can be captured by data, the availability of smart meters (SMs) and micro-phasor measurement units (PMUs) is restricted by cost budget. The limited data access may hinder the performance of the proposed DRCC-CVR. Thus, we further present a data enrichment method to statistically recover the high-resolution load and PV generation data from low-resolution data with Gaussian Process Regression (GPR) and Markov Chain (MC) models, which can be used to construct a data-based moment ambiguity set of uncertainty distributions for the proposed DRCC-CVR. Finally, the nonlinear power flow and voltage dependant load models and DRCC with moment-based ambiguity set are reformulated to be computationally tractable and tested on a real distribution feeder in Midwest U. S. to validate the effectiveness and robustness of the proposed method.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2023.3244895