Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands

Tailoring electron transfer dynamics across solid–liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a small azimuthal misorientation to produce moiré superlattices enables the controlled engineering of electronic band stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2022-02, Vol.14 (3)
Hauptverfasser: Yu, Yun, Zhang, Kaidi, Parks, Holden, Babar, Mohammad, Carr, Stephen, Craig, Isaac M., Van Winkle, Madeline, Lyssenko, Artur, Taniguchi, Takashi, Watanabe, Kenji, Viswanathan, Venkatasubramanian, Bediako, D. Kwabena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tailoring electron transfer dynamics across solid–liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a small azimuthal misorientation to produce moiré superlattices enables the controlled engineering of electronic band structures and the formation of extremely flat electronic bands. Here, we report a strong twist-angle dependence of heterogeneous charge transfer kinetics at twisted bilayer graphene electrodes with the greatest enhancement observed near the ‘magic angle’ (~1.1°). Furthermore, this effect is driven by the angle-dependent tuning of moiré-derived flat bands that modulate electron transfer processes with the solution-phase redox couple. Combined experimental and computational analysis reveals that the variation in electrochemical activity with moiré angle is controlled by a structural relaxation of the moiré superlattice at twist angles of
ISSN:1755-4330