Anharmonic Exciton‐Phonon Coupling in Metal‐Organic Chalcogenides Hybrid Quantum Wells

In contrast to inorganic quantum wells, hybrid quantum wells (HQWs) based on metal‐organic semiconductors are characterized by relatively soft lattices, in which excitonic states can strongly couple to lattice phonons. Therefore, understanding the lattice's impact on exciton dynamics is essenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-04, Vol.11 (7), p.n/a
Hauptverfasser: Kastl, Christoph, Bonfà, Pietro, Maserati, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In contrast to inorganic quantum wells, hybrid quantum wells (HQWs) based on metal‐organic semiconductors are characterized by relatively soft lattices, in which excitonic states can strongly couple to lattice phonons. Therefore, understanding the lattice's impact on exciton dynamics is essential for harnessing the optoelectronic potential of HQWs. Beyond 2D metal halide perovskites, layered metal‐organic chalcogenides (MOCs), which are an air‐stable, underexplored material class hosting room‐temperature excitons, can be exploited as photodetectors, light emitting devices, and ultrafast photoswitches. Here, the role of phonons in the optical transitions of the prototypical MOC [AgSePh]∞ is elucidated. Impulsive stimulated Raman scattering (ISRS) allows the detection of coherent exciton oscillations driven by Fröhlich interaction with low‐energy optical phonons. Steady state absorption and Raman spectroscopies reveal a strong exciton‐phonon coupling (Huang‐Rhys parameter ≈1.7) and its anharmonicity, manifested as a nontrivial temperature‐dependent Stokes shift. The ab initio calculations support these observations, hinting at an anharmonic behavior of the low‐energy phonons
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202202213