Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial La0.5Sr0.5Ni1−xFexO3−δ thin films

Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-01, Vol.15 (3), p.1119-1127
Hauptverfasser: Adiga, Prajwal, Wang, Le, Wong, Cindy, Matthews, Bethany E, Bowden, Mark E, Spurgeon, Steven R, Sterbinsky, George E, Blum, Monika, Min-Ju, Choi, Tao, Jinhui, Kaspar, Tiffany C, Chambers, Scott A, Stoerzinger, Kelsey A, Du, Yingge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La0.5Sr0.5Ni1−xFexO3−δ (x = 0–0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance, suggesting common motifs of the active surface with high surface area systems.
ISSN:2040-3364
2040-3372
DOI:10.1039/d2nr05373j