Physics-based Models, Machine Learning, and Experiment: Towards Understanding Complex Electrode Degradation

Degradation phenomena in Li-ion batteries are highly complex, coupled, and sensitive to use history and operating conditions. In this study, we show how tracking model parameters in continuum-level physics-based models, expedited by machine learning, can be useful in testing hypotheses for degradati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2023-01, Vol.170 (1), p.10502
Hauptverfasser: Mayilvahanan, Karthik S., Nicoll, Andrew, Soni, Jwal R., Takeuchi, Kenneth J., Takeuchi, Esther S., Marschilok, Amy C., West, Alan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Degradation phenomena in Li-ion batteries are highly complex, coupled, and sensitive to use history and operating conditions. In this study, we show how tracking model parameters in continuum-level physics-based models, expedited by machine learning, can be useful in testing hypotheses for degradation mechanisms. An exemplary analysis using this approach is presented for a set of lithium trivanadate ( L i x V 3 O 8 ) cathodes cycled over a range of current rates. A simple cell revival process is combined with the parameter estimates over the course of cycling to extract valuable insights into cathode evolution and eliminate hypothesized degradation mechanisms for these cathodes. The presented approach is expected to be broadly applicable for degradation analysis of other electrodes.
ISSN:0013-4651
1945-7111
DOI:10.1149/1945-7111/acadab