Gas-phase oxidation and nanoparticle formation in multi-element laser ablation plumes

The evolution from gas-phase oxidation to nanoparticle and agglomerate formation was studied in nanosecond laser-produced plasmas of a multi-principal element alloy target in air. Here gas-phase oxidation of plasma species was monitored in situ via optical emission spectroscopy, while a custom-built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-10, Vol.24 (43)
Hauptverfasser: Kautz, Elizabeth J., Zelenyuk-Imre, Alla, Gwalani, Bharat, Phillips, Mark C., Harilal, Sivanandan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution from gas-phase oxidation to nanoparticle and agglomerate formation was studied in nanosecond laser-produced plasmas of a multi-principal element alloy target in air. Here gas-phase oxidation of plasma species was monitored in situ via optical emission spectroscopy, while a custom-built single particle mass spectrometer was used to measure size and compositions of agglomerated nanoparticles formed in laser ablation plumes. Ex situ analysis employing transmission electron microscopy was used to study nanoparticle morphology, crystal structure, and element distribution at the nanoscale. Emission spectra indicate that gas-phase oxidation of elements in the alloy target are formed at varying times during plume evolution, and mass spectrometry results indicate fractal agglomerates contain all principal alloying elements and their oxides. Finally, electron microscopy characterization illustrates that these agglomerates consist of multiple material types: sub-10 nm diameter amorphous, multi-element nanoparticles, ≈10–30 nm diameter Ti-rich crystalline oxide nanoparticles, and ejected base material. Results highlight that the multi-component target composition impacts molecular formation in the gas phase and the morphology, composition, and structure of nanoparticles and agglomerates formed.
ISSN:1463-9076
1463-9084