Micromundos biominerales en las algas rojas

Coralline algae (rhodophyta) populate vast pinkish colour regions of the coast. If you step on them in your bare feet, they might hurt you, because they are hard and sharp. Many organisms find shelter and develop within their tiny branches. Photosynthesis of coralline algae conducts the formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista digital universitaria 2021-11, Vol.22 (6)
Hauptverfasser: Valdespino, Patricia M., Bautista García, Andrea, Pi-Puig, Teresa, Favoretto, Fabio, Espinosa Matías, Silvia, N. Holman, Hoi-Ying, Blanco-Jarvio, Anidia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coralline algae (rhodophyta) populate vast pinkish colour regions of the coast. If you step on them in your bare feet, they might hurt you, because they are hard and sharp. Many organisms find shelter and develop within their tiny branches. Photosynthesis of coralline algae conducts the formation of carbonates that exhibit a fascinating architecture. The alga and its associated microorganisms (microbiota) participate in the formation of these minerals, that accumulate and cement the materials that ultimately shape beaches and coastal lines. Carbonates are susceptible to acid-base chemistry; thus, their structural stability and their dissolution depend on the pH of the surrounding environment. Therefore, these biominerals and the marine organisms that build them (such as algae, corals, mollusks or equinoderms) are vulnerable to ocean acidification. By trying to see beyond our eyesight, we were able to understand that algal branches hide an amazing structural strength, where its microstructure and chemistry play a major role. We found minerals with a vast structural and thermal stability in the algal body, named algal thallus. Currently, basic science explores coralline red and green algae as interesting models to understand carbon sequestration in stable structures. Therefore, this research might inspire the development of technologies to mitigate climate change.
ISSN:1607-6079
1607-6079