Fast and accurate metagenotyping of the human gut microbiome with GT-Pro
Single nucleotide polymorphisms (SNPs) in metagenomics are used to quantify population structure, track strains and identify genetic determinants of microbial phenotypes. However, existing alignment-based approaches for metagenomic SNP detection require high-performance computing and enough read cov...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2022-04, Vol.40 (4), p.507-516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single nucleotide polymorphisms (SNPs) in metagenomics are used to quantify population structure, track strains and identify genetic determinants of microbial phenotypes. However, existing alignment-based approaches for metagenomic SNP detection require high-performance computing and enough read coverage to distinguish SNPs from sequencing errors. To address these issues, we developed the GenoTyper for Prokaryotes (GT-Pro), a suite of methods to catalog SNPs from genomes and use unique
k
-mers to rapidly genotype these SNPs from metagenomes. Compared to methods that use read alignment, GT-Pro is more accurate and two orders of magnitude faster. Using high-quality genomes, we constructed a catalog of 104 million SNPs in 909 human gut species and used unique
k
-mers targeting this catalog to characterize the global population structure of gut microbes from 7,459 samples. GT-Pro enables fast and memory-efficient metagenotyping of millions of SNPs on a personal computer.
Alignment-free SNP calling from metagenomes reduces computational time by two orders of magnitude. |
---|---|
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-021-01102-3 |