Unimolecular Kinetics of Stabilized CH 3 CHOO Criegee Intermediates: syn -CH 3 CHOO Decomposition and anti -CH 3 CHOO Isomerization

The kinetics of the unimolecular decomposition of the stabilized Criegee intermediate syn-CH3CHOO has been investigated at temperatures between 297 and 331 K and pressures between 12 and 300 Torr using laser flash photolysis of CH3CHI2/O2/N2 gas mixtures coupled with time-resolved broadband UV absor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-10, Vol.126 (39), p.6984-6994
Hauptverfasser: Robinson, Callum, Onel, Lavinia, Newman, James, Lade, Rachel, Au, Kendrew, Sheps, Leonid, Heard, Dwayne E., Seakins, Paul W., Blitz, Mark A., Stone, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kinetics of the unimolecular decomposition of the stabilized Criegee intermediate syn-CH3CHOO has been investigated at temperatures between 297 and 331 K and pressures between 12 and 300 Torr using laser flash photolysis of CH3CHI2/O2/N2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy. Fits to experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicate that the barrier height to decomposition is 67.2 ± 1.3 kJ mol–1 and that there is a strong tunneling component to the decomposition reaction under atmospheric conditions. At 298 K and 760 Torr, MESMER simulations indicate a rate coefficient of 150–81 +176 s–1 when tunneling effects are included but only 5–2 +3 s–1 when tunneling is not considered in the model. MESMER simulations were also performed for the unimolecular isomerization of the stabilized Criegee intermediate anti-CH3CHOO to methyldioxirane, indicating a rate coefficient of 54–21 +34 s–1 at 298 K and 760 Torr, which is not impacted by tunneling effects. Expressions to describe the unimolecular kinetics of syn- and anti-CH3CHOO are provided for use in atmospheric models, and atmospheric implications are discussed.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.2c05461