Non‐Flammable Ester Electrolyte with Boosted Stability Against Li for High‐Performance Li Metal Batteries
In traditional non‐flammable electrolytes a trade‐off always exists between non‐flammability and battery performance. Previous research focused on reducing free solvents and forming anion‐derived solid‐electrolyte interphase. However, the contribution of solvated anions in boosting the stability of...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2022-10, Vol.134 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In traditional non‐flammable electrolytes a trade‐off always exists between non‐flammability and battery performance. Previous research focused on reducing free solvents and forming anion‐derived solid‐electrolyte interphase. However, the contribution of solvated anions in boosting the stability of electrolyte has been overlooked. Here, we resolve this via introducing anions into Li+ solvation sheaths using anions with similar Gutmann donor number (DN) to that of solvents. Taking trimethyl phosphate fire‐retardant (DN=23.0 kcal mol−1) and NO3− (DN=22.2 kcal mol−1) as an example, NO3− is readily involved in the Li+ solvation sheath and reduces the polarity of solvent. This results in boosted stability of electrolyte against Li. The developed non‐flammable electrolyte has low viscosity, high ionic conductivity and is low cost. The reversibility of Li‐Cu cell was improved to 99.49 % and the lifespan of practical LMBs was extended by >100 %.
We developed a non‐flammable electrolyte with NO3− readily involved in the Li+ solvation sheath that reduces the polarity of solvent and therefore boosts the stability of electrolyte against Li metal. The electrolyte has low viscosity, high ionic conductivity and is low cost. The Li plating/stripping reversibility in Li‐Cu cell was improved to 99.49 %. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.202206682 |